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QUANTIFICATION OF NONLINEAR FEATURES IN 
CARDIOVASCULAR SIGNALS
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Abstract
The analysis of spontaneous heart rate and blood pressure oscillations under standardized conditions is 
a rapid, sensitive, noninvasive and reproducible tool for the assessment of cardiovascular autonomic 
dysfunction. Since the heart and vessels are controlled by a nonlinear deterministic system, measures derived 
from nonlinear systems theory are increasingly used in cardiovascular variability analysis. New nonlinear 
methods with applicability to real biological signals are continuously developed to quantify new aspects 
of cardiovascular signals with the potential to reveal subtle changes in the cardiovascular control system. 
Nonlinear measures provide complementary information about qualitative features of the analyzed signal. 
Since the analysis of variability magnitude and signal nonlinear characteristics (complexity, recurrences, 
time irreversibility, etc.) can provide independent information on cardiovascular system control, we suggest 
that simultaneous use of both groups of measures can increase the information value and thus improve the 
sensitivity and reliability of the detection and monitoring of the cardiovascular system dysregulation during 
various pathological conditions.

Key words: heart rate variability, blood pressure variability, nonlinear dynamics, complexity

1. CARDIOVASCULAR PARAMETERS VARIABILITY

Cardiovascular dysregulation (not only as a consequence of autonomic neuropathy) is ac-
companied by the markedly increased risk of severe cardiovascular complications includ-
ing fatal arrhythmia and sudden cardiac death. The diagnosis of dysregulation was usually 
performed by evaluation of heart rate and blood pressure changes evoked by Ewing tests, 
including Valsalva manoeuvre, deep breathing test, orthostatic test and isometric handgrip 
test. However, these tests require active patient participation and cooperation, are time 
consuming, difficult to standardize, and carry a potential risk of adverse effects (1, 2). 

It was shown that provoked changes as a tool to investigate the cardiovascular control 
could be substituted by the analysis of spontaneous cardiovascular parameters oscilla-
tions. Heart rate and blood pressure continuously fluctuate over time (Fig. 1) and are 
influenced by different control mechanisms maintaining cardiovascular homeostasis. 
The analysis of short-term (on the time scales of seconds to minutes) spontaneous heart 
rate and blood pressure oscillations (heart rate variability – HRV and blood pressure 
variability – BPV) provides important information on the autonomic control of circulation in 
normal and diseased conditions (4). 

The analysis of HRV and BPV under standardized conditions (supine rest, orthostasis) 
is a rapid, sensitive, noninvasive and reproducible tool for the assessment of cardiovas-
cular autonomic dysfunction (5). Reduction in HRV magnitude is the earliest indica-
tor of cardiovascular dysregulation (e.g. in diabetes mellitus) (6). Since HRV originates 
predominantly from oscillations in parasympathetic nervous traffic and blood vessels 
are predominantly under sympathetic nervous system control, beat-to-beat analysis of 
simultaneously obtained heart rate and blood pressure signals can provide information 
about both components of cardiovascular control (7, 8). 
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Fig. 1. Spontaneous short-term oscillations of heart rate and systolic blood pressure during supine rest. Analysis of 
these oscillations can provide important information on autonomic control of cardiovascular system (3)

HRV and BPV can be quantified in various ways. In 1996, the Task Force of the 
European Society of Cardiology and the North American Society of Pacing and Elec-
trophysiology established a standard set of time and frequency domain measures. 
These numerical characteristics quantifying the magnitude of oscillations are also 
called linear measures because of the assumption of linear dynamics with the pro-
posed output in the form of a set of more or less periodic oscillations (5). The linear 
measures are strongly mutually dependent and their values markedly overlap be-
tween healthy and pathological groups. Therefore, new parameters able to quantify 
additional information (independent of signal magnitude) hidden in the HRV and 
BPV dynamics are needed. 

Importantly, HRV and BPV reflect the complex interactions of many different con-
trol loops of the cardiovascular control system. A detailed description and classifi-
cation of dynamic changes using linear (time and frequency domain) measures is 
often insufficient. Given the complexity of the system modulating the sinus node 
activity, a predominantly nonlinear behavior where the output is not proportional to 
input has to be assumed. It was proposed that the measures from nonlinear dynam-
ics could be important for the description of various phenomena involved in such 
complex control system (9, 10).

Since the heart and vessels are controlled by a nonlinear deterministic system, 
measures derived from nonlinear systems theory are increasingly used in cardiovas-
cular variability analysis. However, the application of traditionally used nonlinear 
methods (developed for mathematical and physical applications mostly in 1980s-90s; 
e.g. correlation dimension, largest Lyapunov exponent) is limited only to long sta-
tionary signals – a condition that is only rarely met in biology (11) and their uncriti-
cal application to biological data can lead to serious pitfalls (12). New methods with 
applicability to real biological signals are continuously developed to quantify new 
aspects of short quasistationary HRV and BPV signals with the potential to reveal 
subtle changes in the cardiovascular control system (9).

The aim of this paper is to summarize novel nonlinear approaches developed to 
quantify various aspects of cardiovascular signal characteristics from short data re-
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cordings (~ 5-15 min). In the following sections, the methods for assessment of com-
plexity, recurrences in dynamics and time irreversibility are briefly introduced. 

2 CARDIOVASCULAR COMPLEXITY

Integrated biological systems are characterized by various interacting subsystems 
and feedback loops processing internal and external inputs. This complex organiza-
tion results in a dynamical complexity that can be revealed and quantified by the 
analysis of the time course of system variables under control (e.g. heart rate, systolic 
blood pressure). Cardiovascular regulation in the healthy human body is mediated by 
a variety of neural, hormonal, genetic and external interactions that operate across 
multiple time scales. Output variables of that system exhibit complex fluctuations 
- the measured output signal is characterized by great complexity. Human body is 
a complex adaptive system and the complexity in its behavior allows for broadest 
range of adaptive responses inherent to a healthy individual. A wide class of various 
disease states as well as aging appear to reduce this complexity hereby reducing the 
adaptive capacity of the individual. Therefore, the loss of complexity was proposed as 
a general feature of pathological dynamics (13-15). 

Numerous studies have suggested that the quantification of complexity is of impor-
tance for the understanding as well as for the classification of heart rate oscillations 
(14, 16). In contrast, complexity analysis of blood pressure fluctuations have only 
been performed rarely (17). 

2.1 QUANTIFICATION OF COMPLEXITY

 2.1.1 Entropy measures
In the framework of Shannon’s information theory (1946) (18), entropy is the meas-

ure of information of a given message. A message with a low entropy /information 
is characterized by repetition. For example, the message ‘123123123123’could be 
simply expressed by ‘4x123’ without any loss of information. A message with high 
entropy/information on the other hand is characterized by little redundancy, e.g. 
‘234365434463’.

In the case of HRV and BPV analysis, entropy measures are therefore used to quan-
tify the complexity / regularity of heart rate / blood pressure fluctuations. Firstly, 
the complexity analysis of HRV was performed by calculation of Approximate Entropy 
(ApEn) introduced by Pincus in 1991. This measure was aimed to provide widely appli-
cable data analysis measure enabling to classify data based on their regularity (19). 

 Sample entropy (SampEn) is an improved version of the approximate entropy. 
SampEn calculates the probability that NN interval sequences (NN denotes the time 
duration of normal RR interval) of length m that are similar within a tolerance r re-
main similar at the next point. SampEn is precisely the negative natural logarithm of 
the conditional probability that a dataset of length N, having repeated itself within a 
tolerance r for m points, will also repeat itself for m + 1 points, without allowing self-
matches (20) (Fig. 2).
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Fig. 2. Sample Entropy (SampEn) of heart rate oscillations and its changes in subject during supine rest (L1-
L5), orthostasis (S), and recovery after physical exercise. The reduction of SampEn during orthostasis and 
recovery after exercise indicates the simplification of heart rate dynamics accompanying the shift of autonomic 
nervous system balance towards sympathetic predominance. The asterisks indicate the significant difference 
from supine rest values (21)

A different way to assess entropy is based on data compression technique. In informa-
tion theory, the smallest algorithm that produces a string is at the same time the en-
tropy of that string (Chaitin-Kolmogorov entropy). Although it is theoretically impossible 
to develop such an algorithm, data compression techniques might provide a good ap-
proximation. The modified version of the LZ77 algorithm for lossless data compression 
introduced by Lempel and Ziff (1977) (22) can be used to compress time series. The ratio 
of the uncompressed to the compressed time series named compression entropy (H

c
) is 

used as a HRV and BPV complexity measure (13) (Fig. 3). 

Fig. 3. Compression entropy (Hc) of heart rate is significantly lower in young patients with type 1 diabetes 
mellitus (DM) compared to control group (CON) according to the concept of complexity loss as an indicator of 
cardiac dysregulation (23) 
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2.1.2 Symbolic dynamics
The concept of symbolic dynamics goes back to Hadammard (1898) and allows a sim-

plified description of the dynamics of a system with a limited amount of symbols. In HRV 
analysis from ECG, consecutive RR intervals or their changes, respectively, are encoded 
according to some transformation rules into a few symbols of a certain alphabet. Subse-
quently, the dynamics of that symbol string are quantified, providing some more global 
information about the heart rate / blood pressure dynamics. Several techniques are 
used to describe dynamics encoded in symbolic sequence (24, 25).

Approach according to Voss et al (1996) (24): The difference between each NN interval 
and the mean NN interval is transformed into an alphabet of 4 symbols {0, 1, 2, 3} ac-
cording to the transformation rule described in (24). Symbols ‘0’ and’2’ reflect low de-
viation (decrease or increase) from the mean NN interval, and symbols ‘1’ and ‘3’ reflect 
a stronger deviation (decrease or increase over a predefined limit). Subsequently, the 
symbol string is transformed to words of three successive symbols, e.g. ‘023’ or ‘221’. 
The distribution of word types reflects some nonlinear properties of HRV. From this 
symbolic dynamics the following measures of complexity can be calculated: FORBWORD 
– number of word types that occur seldom, i.e. with a probability less 0.001, shannon – 
Shannon entropy over all word types as defined by Voss et al. (24). In the pathological 
conditions FORBWORD increases while shannon decreases reflecting the simplification 
of system dynamics – i.e. the loss of complexity. 

Approach according to Porta et al (2001) (25): NN interval sequences are uniformly 
spread on six levels, resulting in 6 different symbols {0, 1, 2, 3, 4, 5}. Two approaches 
are used for analysis of resulting symbolic time series. Normalized complexity index (NCI) 
is a measure of complexity and is computed as a minimum of normalized corrected 
conditional entropy (NCCE) as a function of L (length of pattern). NCCE is a measure 
of the amount of information (corrected for short-term time series) carried by the L-th 
sample when the previous L-1 samples are known. NCCE remains constant in case of 
white noise; decreases to zero in case of fully predictable signals; exhibits a minimum 
if repetitive pattern is embedded in noise. NCI is a measure of the complexity of pattern 
distribution. It ranges from zero (maximum regularity) to one (maximum complexity) 
- the larger the NCI, the more complex and less regular the time series. The second ap-
proach is focused on the pattern classification within dynamics (26): all the patterns 
(symbolic sequences) with L = 3 were grouped into 4 families according to number and 
types of variations from one symbol to the next one. The pattern families are: 1) patterns 
with no variation (0V, all three symbols are equal); 2) patterns with one variation (1V, 
two consecutive symbols are equal and the remaining one is different); 3) patterns with 
two like variations (2LV, three symbols form an ascending or descending ramp), 4) pat-
terns with two unlike variations (2UV, three symbols form a peak or a valley). The rates 
of occurrence of these patterns are indicated as 0V%, 1V%, 2LV% and 2UV% (Fig. 4). 
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Fig. 4. Symbolic dynamics analysis of heart rate during orthostasis revealed significantly lower complexity 
(index NCI, i.e. nonlinear complexity index; # indicates the statistically significant difference) in girls with 
major depression (D) compared to control group (C). While no differences in NCI were found in both supine 
positions (before and after orthostasis) these results stress the importance of cardiovascular variability testing 
during various standardized conditions (27) 

2.1.3 Multiscale entropy
From recently developed nonlinear methods, measures of short-term complexity (vari-

ous entropy measures) have shown to be promising for analysis of both heart rate and 
blood pressure signals (13, 26, 28). However, since beat-to-beat RR interval and BP time 
series under healthy conditions have a complex temporal structure with correlations on 
multiple scales, single-scale based traditional entropy measures (e.g. Sample Entropy) 
may fail to account for the multiple time scales inherent in the complex physiological 
system dynamics. Therefore, a meaningful measure of complexity should take into ac-
count multiple time scales. Recently, Costa et al (2002) (29) introduced a new method to 
calculate entropy over multiple scales – Multiscale Entropy analysis (MSE).

MSE is computed according to the procedure published by Costa (29). First step in-
volves the construction of coarse-grained time series for each of the analyzed time scales 
determined by the scale factor . In other words, coarse-grained time series for scale  
are obtained by taking arithmetic mean of τ neighbouring original values without over-
lapping. For scale 1, the coarse grained time series is simply the original time series. 
In the next step, SampEn values are calculated for each one of the coarse-grained time 
series and plotted against the scale factor. In this way, MSE describes the entropy (com-
plexity) for various time scales of fluctuations within the analysed signal (Fig. 5). 
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Fig. 5. Multiscale entropy analysis of heart rate (HR), systolic blood pressure (SBP) and diastolic blood 
pressure (DBP) oscillations during supine rest in patients with type 1 diabetes mellitus (open triangles, DM) 
and age and gender matched control subjects (full circles, control). In multiscale entropy analysis, Sample 
Entropy (SampEn) values are plotted against the corresponding time scale (in this study, for time scales 1-10). 
While reduction in complexity in DM was not detectable on scale 1 (original time series), significant loss of 
complexity in all three signals was detected on higher scales (2-3) indicating the importance of multiscale 
approach for cardiovascular signals complexity analysis. MSE was the only method capable to reveal subtle 
differences between both groups of subjects in blood pressure variability signals (17) 

2.2 Recurrences in cardiovascular dynamics
Recurrence is a basic feature of many dynamical systems – it is defined as the repeated 

occurrence of a given state of the system in time. Recurrence plot (RP) is a graphical rep-
resentation of such recurrences in a dynamical system (30) (Fig. 6). 

Fig. 6. A representative example of the recurrence plots (RP) constructed from heart rate oscillations during 
supine (A) and standing positions (B). RP was constructed as follows: any recurrence of state in time i (x – axis) 
with the state in time j (y – axis) is plotted as a black dot. In both presented RPs, the percentage of recurrence 
(%Rec; percentage of black points) was fixed to 5% - it means that the 5% of all points of RP were recurrent. 
The differences were found in the structure of patterns within RP: in standing position, higher proportion of 
points were grouped into diagonals (percentage of determinism - %Det: 41% in supine vs. 78% in standing 
position) and verticals (Laminarity – Lam: 0.593 in supine vs. 0.860 in standing position) (31) 
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As shown by analysis of model signals, RPs are sensitive to subtle qualitative changes 
in the system‘s dynamics (bifurcations) and could therefore be used for the characteri-
zation of shifts in basic cardiovascular parameters dynamics during both physiological 
and pathological conditions. The major advantage of recurrence plots is their applicabil-
ity to short and nonstationary physiological time series. The power of RP also resides in 
its independence from constraining assumptions and limitations plaguing other analy-
ses. Because recurrence structures are simply tallied within the signal, there is no need 
to pre-condition the data by filtering, linear detrending, or transforming the data to 
conform to any particular statistical distribution. For these reasons RPs has proven to 
be ideally suited for the study of numerous real-world systems (30).

The structures exhibited by RP reveal information on system properties and can be de-
scribed quantitatively by recurrence quantification analysis (RQA) (32, 33). RQA was use-
ful for detection of heart rate dysregulation in various pathological conditions including 
chronic fatigue syndrome, hypertension, ventricular arrhythmia (34, 35). 

2.3 Time irreversibility
Recently, it was shown that heart rate and blood pressure signals show a feature of 

time irreversibility. This phenomenon is specific for nonequilibrium systems with inher-
ent complexity (36) and can be described as the lack of signal statistical properties sta-
bility after the signal time reversal. In other words, the signal is irreversible if its statisti-
cal properties are changed after the reversal of time (when one looks on the signal from 
right to left) (37). Several methods to quantify time asymmetry and their robustness and 
independence are introduced in this issue of Acta Medica Martiniana (38). 

3 Conclusion
Autonomic function testing is essential to diagnose cardiovascular dysregulation 

which might result in fatal endpoints such as sudden cardiac death. The magnitude as 
well as nonlinear features of HRV may be easily quantified on relatively short record-
ings in a routine clinical setting, requiring only ECG and automated computer software, 
being neither cost nor labour intensive. HRV and BPV analysis is a useful tool for the 
diagnosis and monitoring of autonomic dysregulation and should include nonlinear 
analysis along with traditional time and frequency indices. Assessing HRV and BPV 
might also be suited to monitor different pharmacological and non-pharmacological 
treatment strategies. 

While linear variability measures provide information on the overall magnitude of os-
cillations (quantitative analysis), nonlinear measures provide complementary informa-
tion about qualitative features of the analyzed signal. Since analysis of variability and 
nonlinear characteristics (complexity, recurrences, time irreversibility, etc.) can provide 
independent information on cardiovascular system control, it is beneficial to use both 
groups of measures simultaneously in the studies demanding the application of HRV 
and BPV analysis as a noninvasive tool for the assessment of cardiovascular autonomic 
nervous system function. We suggest that simultaneous use of both groups of measures 
can increase the information value and thus improve the sensitivity and reliability of the 
detection and monitoring of the cardiovascular system dysregulation during various 
pathological conditions. To verify this, other studies on the HRV/BPV complexity meas-
ures application during specific pathological conditions are needed.
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