Surface Modification of Olive Stone Waste for Enhanced Sorption Properties of Cadmium and Lead Ions

Open access


This paper reports the synthesis and characterization of an efficient anionic olive stone waste-based material as new ion-exchanger adsorbent. The olive stone waste was subjected to an alkaline pretreatment in order to enhance their reactivity towards maleic anhydride. The maleate-derived material MOS was characterized by FTIR, 13C NMR, TGA and DSC. The resulting sodium form of material NaMOS was subjected to batch experiments in order to evaluate its cadmium and lead removal efficiency. Adsorption experimental data showed a uniform and rapid process. Both Langmuir and Freundlich isotherm models were found to fit adequately the equilibrium isotherm data. The sorption capacities reached 240.96 mg Cd g−1 and 127.38 mg Pb g−1. The thermodynamic parameters showed that the process was exothermic and the adsorption occurred spontaneously. The desorption experiments show a quantitative recovery of the metal ions from NaMOS material.

1. Gupta, V.K.; Rastogi, A. Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies. J. Hazard. Mater. 2008, 152, 407–414.

2. Gupta, V.K.; Ali, I. Removal of lead and chromium from wastewater using bagasse fly ash – a sugar industry waste. J. Colloid Interface Sci. 2004, 271, 321–328.

3. Liu, D.H.F.; Liptack, B.G., Bouis, P.A. Environmental Engineer’s Handbook, 2nd edn, Lewis, Boca Raton, FL, USA, 1997.

4. Hao, J.; Li, C.; Hu, C.; Wu, K. Rapid, efficient and economic removal of organic dyes and heavy metals from wastewater by zinc-induced in-situ reduction and precipitation of graphene oxide. J. Taiwan Inst. Chem. Eng. 2018, 88, 137-145.

5. Reddy, B.R., Priya, D.N. Chloride leaching and solvent extraction of cadmium, cobalt and nickel from spent nickel–cadmium, batteries using Cyanex 923 and 272. J. Power Sources, 2006, 161, 1428–1434.

6. Malla, M.E.; Alvarez, M.B., Batistoni, D.A. Evaluation of sorption and desorption characteristics of cadmium, lead and zinc on Amberlite IRC-718 iminodiacetate chelating ion exchanger. Talanta, 2002, 57, 277–287.

7. Navarro, R.; Saucedo, I.; Nunez, A.; Avila, M., Guibal, E. Cadmium extraction from hydrochloric acid solutions using Amberlite XAD-7 impregnated with Cyanex 921 (tri-octyl phosphine oxide). React. Funct. Polym. 2008, 68, 557–571.

8. Dabrowski, A.; Hubicki, Z.; Podkoscielny, P., Robens, E. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 2004, 56, 91–106.

9. El-Gohary, F.; Tawfik, A., Mahmoud, U. Comparative study between chemical coagulation/precipitation (C/P) versus coagulation/dissolved air flotation (C/DAF) for pre-treatment of personal care products (PCPs) wastewater. Desalination 2010, 252, 106–112.

10. Dubois, M.A.; Dozol, J.F.; Nicotra, C.; Serose, J., Massiani, C. Pyrolysis and incineration of cationic and anionic ion-exchange resins—Identification of volatile degradation compounds. J. Anal. Appl. Pyrol. 1995, 31, 129–140.

11. Reed, B.E.; Arunachalam, S.; Thomas, B. Removal of lead and cadmium from aqueous streams using granular activated carbon columns. Environ. Program. 1994, 13, 60–64.

12. Mohan, D.; Singh K.P. Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse-an agricultural waste. Water Research, 2002, 36, 2304–2318.

13. Sigdel, A.; Jung, W.; Min, B.; Lee, M.; Choi, U.; Timmes, T.; Kimb, S-J. Concurrent removal of cadmium and benzene from aqueous solution by powdered activated carbon impregnated alginate beads. Catena 2016, 148, 101-107.

14. Çaglar, E.; Donar, Y.O.; Sinag, A., Birogul, I.; Bilge, S.; Aydincak, K.; Pliekhov, O. Adsorption of anionic and cationic dyes on biochars, produced by hydrothermal carbonization of waste biomass: effect of surface functionalization and ionic strength. Turk. J. Chem. 2018, 42, 86-99.

15. Faghihian, H.; Ghannadi, M.; Kazemian H. The use of clinptilolite of radioactive cesium and strontium from nuclear waste water and lead, nickel, cadmium, barium from municipal waste water. Sep. Sci. Technol. 1999, 34, 2275–2292.

16. Pansini, M.; Collella C. Dynamic data on lead uptake from water by chabazite. Desalination 1990, 78, 287–295.

17. Liu, H.; Peng, S.; Shu, L.; Chen, T.; Bao, T.; Frost, R.L. Magnetic zeolite NaA: Synthesis, characterization based on metakaolin and its application for the removal of Cu2+, Pb2+. Chemosphere 2013, 91, 1539–1546.

18. Srivastav, R.K.; Gupta, S.K.; Nigam, K.D.P.; Vasudevan, P. Use of aquatic plants for the removal of heavy metals from waste waters. Int. J. Environ. Stud. 1993, 45, 43–50.

19. Khozhaenko, E.; Kovalev, V.; Podkorytova, E.; Khotimchenko, M.) Removal of the metal ions from aqueous solutions by nanoscaled low molecular pectin isolated from seagrass Phyllospadix iwatensis. Sci. Total Environ. 2016, 565, 913–921.

20. Tuzen, M.; Sahiner, S.; Hazer, B. Solid phase extraction of lead, cadmium and zinc on biodegradable polyhydroxybutyrate diethanol amine (PHB-DEA) polymer and their determination in water and food samples. Food Chem. 2016, 210, 115–120.

21. Rafatullah, M.; Sulaiman, O.; Hashim, R. Ahmad, A. Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust. J. Hazard. Mater. 2009, 170, 969–977.

22. Gupta, V.K.; Mohan, D.; Sharma, S. Removal of lead from wastewater using bagasse fly ash - a sugar industry waste material. Sep. Sci. Technol. 1998, 33, 1331–1343.

23. Akhtar, M.; Iqbal, S.; Kausar, A.; Bhanger, M.I.; Shaheen, M.A. An economically viable method for the removal of selected divalent metal ions from aqueous solutions using activated rice husk. Colloids Surf. B: Biointerfaces, 2010, 75, 149–155.

24. Vilardi, G.; Di Palma, L.; Verdone, N. Heavy metals adsorption by banana peels micro-powder: Equilibrium modeling by non-linear models, Chin. J. Chem. Eng. 2018, 26, 455-464.

25. Martín-Lara, M.A.; Hernáinz, F.; Calero, M.; Blázquez, G.; Tenorio, G. Surface chemistry evaluation of some solid wastes from olive-oil industry used for lead removal from aqueous solutions. Biochem. Eng. J. 2009, 44, 151–159.

26. Aziz, A.; Elandaloussi, E.H.; Belhalfaoui, B.; Ouali, M.S. de Ménorval, L-C. Efficiency of succinylated-olive stone biosorbent on the removal of cadmium ions from aqueous solutions. Colloids Surf. B: Biointerfaces. 2009, 73,192–198.

27. Fiol, N.; Villaescusa, I.; Martínez, M.; Miralles, N.; Poch, J.; Serarols, J. Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste. Sep. Purif. Technol. 2006, 50, 132–140.

28. Blázquez, G.; Hernáinz, F.; Calero, M.; Ruiz-Núñez, L.F. Removal of cadmium ions with olive stones: the effect of some parameters. Process Biochem. 2005, 40, 2649–2654.

29. Chang, S.; Chang, H. Comparisons of the photostability of esterified wood. Polym. Degrad. Stabil. 2001, 71, 261–266.

30. Liu, C.-F.; Sun, R.-C.; Qin, M.-H.; Zhang, A.-P.; Ren, J.-L.; Xu, F.; Ye, J.; Wu, S.-B. Chemical modification of ultrasound-pretreated sugarcane bagasse with maleic anhydride. Ind. Crops Prod. 2007, 26, 212–219.

31. Belhalfaoui, B.; Aziz, A.; Elandaloussi, E.H.; Ouali, M.S. and de Ménorval, L-C. Succinate-bonded cellulose: a regenerable and powerful sorbent for cadmium-removal from spiked high hardness groundwater. J. Hazard. Mater. 2009, 169, 831–837.

32. Emsley, J. The Elements. Clarendon Press, Oxford, USA, 1989.

33. Mohan, D.; Kumar, H.; Sarswat, A.; Alexandre-Franco, M.; Pittman Jr. C.U. Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis biochars. Chem. Eng. J. 2014, 236, 513–528.

34. Weber, T.W.; Chakravorti, R.K. Pore and solid diffusion models for fixed bed adsorbers. Am. Institut. Chem. Eng. J. 1974, 20, 228–238.

35. Renault, F.; Morin-Crini, N.; Gimbert, F.; Badot, P-M.; Crini, G. Cationized starch-based material as a new ion-exchanger adsorbent for the removal of C.I. Acid Blue 25 from aqueous solutions. Bioresour. Technol. 2008, 99, 7573–7586.

36. Al-Duri, B., Adsorption modeling and mass transfer, In: Use of Adsorbents for the Removal of Pollutants from Wastewaters; G. McKay, Ed.; CRC Press: 1996, pp. 133–173.

37. Tien, C., Adsorption Calculations and Modeling; Butterworth– Heinemann Series in Chemical Engineering, Boston, 1994.

38. Treybal, R.E. Mass Transfer Operations; McGraw-Hill, New York, 1987.

39. Gurgel, L.V.A.; Karnitz Junior, O.; Gil, R.P.F.; Gil, L.F. Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by cellulose and mercerized cellulose chemically modified with succinic anhydride. Bioresour. Technol. 2008, 99, 3077–3083.

40. Karnitz, O.; Gurgel, L.V.A.; Perin de Melo, J.C.; Botaro, V.R.; Melo, T.M.S.; Gil, R.P.F.; Gil, L.F. Adsorption of heavy metal ion from aqueous solution single metal solution by chemically modified sugarcane bagasse. Bioresour. Technol. 2007, 98, 1291–1297.

Acta Chemica Iasi

The Journal of "Alexandru Ioan Cuza" University from Iasi

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 155 155 24
PDF Downloads 113 113 17