Magnetic and Antibacterial Studies of Nanoferrites Prepared by Self Propagating High-Temperature Synthesis Route

Open access

Abstract

The main objective of the manuscript is the structural analysis, magnetic investigation and antimicrobial activity of Mn1−xZnxFe2O4 with stoichiometry (x = 0, 0.25, 0.5, 0.75, and 1.0). The Mn-Zn nanoferrites were synthesized by self propagating high-temperature synthesis using a mixture of fuels. The synthesized Mn-Zn nanoferrites were characterized by X-ray diffraction (XRD) that confirms cubic crystal structure with lattice constant in the range 8.372-8.432Ao. It is observed that saturation magnetization (Ms), remanence magnetization (Mr) and magneton number (Mr/Ms) decreased gradually with the increasing of Zn2+ concentration. The decrease in the saturation magnetization may be explained as, the Zn2+ concentration increases, the relative number of ferric ions on the A sites diminishes and this reduces the A–B interaction. Further, the synthesized Mn-Zn nanoferrites were tested for antibacterial activities against two-gram positive strains (Staphylococcus aureus ATCC No–12598, Lactobacillus amylovorus ATCC No– 12598), gram-negative strains E.coli ATCC No – 25922, Pseudomonas- ATCC No- 25619) and one fungal strain (C.albicans -ATCC No – 2091).

1. Hagfeldth, A.; Gratzel, M. Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 1995, 95, 49-68.

2. Goldman, A. Modern Ferrite Technology. Springer-Verlag: Pittsburgh, 2006.

3. Viswanathan, B., Murthy, V.R.K. Ferrite Materials. Springer Verlag: Berlin, 1990.

4. Prasad, S.; Gajbhiye, N.S. Magnetic studies of nanosized nickel ferrite particles synthesized by the citrate precursor technique. J. Alloys Compd. 1998, 265, 87-92.

5. Verma, A.; Goel, T.C.; Mendiratta, R.G.; Gupta, R.G. High-resistivity nickel–zinc ferrites by the citrate precursor method. J. Magn. Magn. Mater. 1999, 192, 271-276.

6. Nakamura, T.; Miyamoto, T.; Yamada, Y. Complex permeability spectra of polycrystalline Li–Zn ferrite and application to EM-wave absorber. J. Magn. Magn. Mater. 2003, 256, 340-347.

7. Waqus, H.; Quresghi, A.H. Influence of pH on nanosized Mn-Zn ferrite synthesized by sol-gel auto combustion process. J. Therm. Analy. Calori. 2009, 98, 355-360.

8. Rendale, M.K.; Mathad, S.N.; Vijaya, P. Dielectric and magnetic properties of substituted Li-Zn ferrite thick films clouded over a half wavelength microstrip rejection filter. Int. J. Self-Propag. High-Temp. Synth. 2016, 25(2), 86–91.

9. Nicolas, J.; Wohlfarth, E.P. Microwave ferrites. In Ferromagnetic Materials, Vol. 2; E.P. Wohlfarth, Ed.; North-Holland: Amsterdam, 1980.

10. Baden Fuller, A.J. Ferrites at Microwave Frequencies, Peter Peregrinus, London, 1987.

11. Harris, V.G.; Geiler, A.; Chen, Y.; Yoon, S.D.; Wu, M.; Yang, A.; Chen, Z.; He, P.; Parimi, P.V.; Zuo, X.; Patton, C.E.; Abe, M.; Acher, O.; Vittoria, C. Recent advances in processing and applications of microwave ferrites. J. Magn. Magn. Mater. 2009, 321, 2035-2047.

12. Lagarkov, A.N.; Rozanov, K.N. High-frequency behavior of magnetic composites. J. Magn. Magn. Mater. 2009, 321, 2082- 2092.

13. Rao, B.P.; Caltun, O.F.; Cho, W.S, Kim, C.-O.; Cheol, G.K. Synthesis and characterization of mixed ferrite nanoparticles. J. Magn. Magn. Mater. 2007, 310, e812–e814.

14. Kagotani, T.; Kobayashi, R.; Sugimoto, S.; Inomata, K.; Okayama, K.; Akedo, J. Magnetic properties and microwave characteristics of Ni– Zn–Cu ferrite film fabricated by aerosol deposition method. J. Magn. Magn. Mater. 2005, 290–291, 1442–1445.

15. Xie, J.L.; Han, M.; Chen, L.; Kuang, R.; Deng, L. Microwave-absorbing properties of NiCoZn spinel ferrites. J. Magn. Magn. Mater. 2007, 314, 37–42.

16. Zhao, H.; Sun, X.; Maoc, C.; Du, J. Preparation and microwave– absorbing properties of NiFe2O4-polystyrene composites. Physica B 2009, 404, 69-72.

17. Rezlescu, N.; Rezlescu, E.; Tudorache, F.; Popa, P.D. MgCu nanocrystalline ceramic with La3+ and Y3+ ionic substitutions used as humidity sensor. J. Opt. Adv. Mater. 2004, 6, 695-698.

18. Chu, X.; Cheng, B.; Hu, J.; Qin, H.; Jiang, M. Semiconducting gas sensor for ethanol based on LaMgxFe1−xO3 nanocrystals. Sens. Actuators B Chem. 2008, 129, 53-58.

19. Raj, K.; Moskowitz, R.; Casciari, R. Advances in ferrofluid technology. J. Magn. Magn. Mater. 1995, 149, 174-180.

20. Yattinahalli, S.S., Kapatkar, S.B., Ayachit, N.H.; Mathad, S.N. Synthesis and structural characterization of nanosized nickel ferrite. Int. J. Self-Propag. High-Temp. Synth. 2013, 22(3), 147–150.

21. Cannas, C.; Ardu, A.; Peddis, D.; Sangregorio, C.; Piccaluga, G.; Musinu, A. Surfactant-assisted route to fabricate CoFe2O4 individual nanoparticles and spherical assemblies. J. Coll. Interf. Sci. 2010, 343, 415-422.

22. Nasr Isfahani, M.J.; Myndyk, M. Magnetic properties of nanostructured MnZn ferrite. J. Magn. Magn. Mater. 2009, 321, 152–156.

23. Kashid, P.; Mahadev, S.; Kulkarni, A.B.; Mathad, S.N.; Shedam, R. Synthesis and structural studies of nano Co0.85Cd 0.15Fe2O4 ferrite by Co-precipitation Method. J. Adv. Phys. 2017, 6, 545–548.

24. Zhang, D.; Zhang, X.; Ni, X.; Song, J.; Zheng, H. Low-temperature fabrication of MnFe2O4 octahedrons: magnetic and electrochemical properties. Chem. Phys. Lett. 2006, 426, 120–123.

25. Bharamagoudar, R.C.; Angadi, J.; Patil, A.S.; Kankanawadi, L.B.; Mathad, S.N. Structural and dielectrical studies of nano Mn-Zn ferrites prepared by combustion method. Int. J. Self-Propag. High-Temp. Synth. 2019, in press.

26. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Third Informational Supplement CLSI document M100-S23; CLSI: Wayne, PA, USA, 2013.

27. Nalawade, T.M.; Bhat, K.G.; Sogi, S. Antimicrobial activity of endodontic medicaments and vehicles using agar well diffusion method on facultative and obligate anaerobes. Int. J. Clin. Pediatr. Dent. 2016, 9(4), 335–341.

28. Rendale, M.K.; Mathad, S.N.; Puri, V. Thick films of magnesium zinc ferrite with lithium substitution: Structural characteristics. Int. J. Self-Propag. High-Temp. Synth. 2015, 24(2), 78–84.

29. Thakur, S.; Katyal. S.C.; Singh, M. Structural and magnetic properties of nano nickel–zinc ferrite synthesized by reverse micelle technique. J. Magn. Magn. Mater. 2009, 321(1), 1-7.

30. Standley, K.J., Oxide Magnetic Materials. Clarendon Press, Oxford, 1972; pp. 11.

31. Jagadeesha Angadi, V.; Rudraswamy, B.; Matteppanavar, S.; Bharathi, P.; Praveena, K. Magnetic properties of nanocrystalline Mn1-xZnxFe2O4. AIP Conference Proceedings 2015, 1665(1), 050014.

32. Iravani, S. Bacteria in nanoparticle synthesis. Int. Sch. Res. Notices 2014, Article ID 359316, 18 pages.

33. Prabhu, Y.T.; Rao, K.V.; Kumari, B.S.; Vemula, S.S.K.; Pavani, T. Synthesis of Fe3O4 nanoparticles and its antibacterial application. Int. Nano Lett. 2015, 5(2), 85-92.

34. Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227-1249.

Acta Chemica Iasi

The Journal of "Alexandru Ioan Cuza" University from Iasi

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 237 237 33
PDF Downloads 140 140 26