Flavonoids – Small Molecules, High Hopes

Open access


This brief review takes a look at flavonoids, a wide class of polyphenols, which are regarded as plant secondary metabolites. Their roles in plants are diverse and little understood. They can act as growth hormone modulators, phytoalexins, they offer UV protection, contribute to pollen viability and can function as signaling molecules in establishing symbiotic relationships. Flavonoids were also found to have a range of beneficial effects for the human body. Their anticancer, antioxidant, anti-inflammatory and cardioprotective activity, as well as their antibacterial, antiviral and antihelmintic properties make them promising candidates for the design of new drugs.

1. Williams, C. A.; Grayer, R. Anthocyanins and other flavonoids. J. Nat. Prod. Rep. 2004, 21, 539-573.

2. http://www.gutenberg.org/files/14504/14504-h/14504-h.htm

3. Wendy, A. P.; Angus, S. M. Flavonoids and auxin transport: modulators or regulators?. Trends Plant Sci. 2007, 12, 556-563.

4. Treutter, D. Significance of Flavonoids in Plant Resistance and Enhancement of Their Biosynthesis. Plant Biology. 2005, 7, 581-591.

5. Taylor, L. P.; Grotewold, E. Flavonoids as developmental regulators. Curr. Opin. Plant Biol. 2005, 8, 317-323.

6. Liu, C. W.; Murray, J. D. The Role of Flavonoids in Nodulation Host- Range Specificity: An Update. Plants. 2016, 5, 33.

7. Luo, M.; Wan, S.; Sun, X.; Ma, T.; Huang, W. Interactions between auxin and quercetin during grape berry development. Sci. Hortic- Amsterdam. 2016, 205, 45-51.

8. Yin, R.; Han, K.; Heller, W.; Albert, A.; Dobrev, P. I.; Zazimalova, E.; Schaffner, A. R. Kaempferol 3-O-rhamnoside-7-O-rhamnoside is an endogenous flavonol inhibitor of polar auxin transport in Arabidopsis shoots. New Phytol. 2014, 201, 466-475.

9. Peer, W. A.; Bandyopadhyay, A.; Blakeslee, J. J.; Makam, S. N.; Chen, R. J.; Masson, P. H.; Murphy, A. S. Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in Arabidopsis thaliana. Plant Cell. 2004, 16, 1898-1911.

10. Hasegawa, M.; Mitsuhara, I.; Seo, S.; Okada, K.; Yamane, H.; Iwai, T.; Ohashi, Y. Analysis on Blast Fungus-Responsive Characters of a Flavonoid Phytoalexin Sakuranetin; Accumulation in Infected Rice Leaves, Antifungal Activity and Detoxification by Fungus. Molecules. 2014, 19, 11404-11418.

11. Götz M.; Albert, A.; Stich, S.; Heller, W.; Scherb, H.; Krins, A.; Langebartels, C.; Seidlitz, H. K.; Ernst, D. PAR modulation of the UVdependent levels of flavonoid metabolites in Arabidopsis thaliana (L.) Heynh. leaf rosettes: cumulative effects after a whole vegetative growth period. Protoplasma. 2010, 243, 95-103.

12. Taylor, L. P.; Jorgensen, R. Conditional Male Fertility in Chalcone Synthase-Deficient Petunia. J. Hered. 1992, 83, 11-17.

13. Ylstra, B.; Busscher, J.; Franken, J.; Hollman, P. C. H.; Mol, J. N. M.; van Tunen, A. J. Flavonols and fertilization in Petunia hybrida: localization and mode of action during pollen tube growth. Plant J. 1994, 6, 201-212.

14. Ylstra, B.; Muskens, M.; van Tunen, A. J. Flavonols are not essential for fertilization in Arabidopsis thaliana. Plant Mol. Biol. 1996, 32, 1155-1158.

15. Pueppke, S. G.; Bolanos-Vasquez, M. C.; Werner D.; Bec-Ferte, M. P.; Prome, J. C.; Krishnan, H. B. Release of Flavonoids by the Soybean Cultivars McCall and Peking and Their Perception as Signals by the Nitrogen-Fixing Symbiont Sinorhizobium fredii. Plant Physiol. 1998, 117, 599-606.

16. Fu, Y.; Chen, J.; Li, Y. J.; Zheng, Y. F.; Li, P. Antioxidant and antiinflammatory activities of six flavonoids separated from licorice. Food Chem. 2013, 141, 1063-1071.

17. Lemmens, K. J. A.; van de Wier, B.; Vaes, N.; Ghosh, M.; van Zandvoort, M. A. M. J.; van der Vijgh, W. J. F.; Bast, A.; Haenen, G. R. M. M. The flavonoid 7-mono-O-(β-hydroxyethyl)-rutoside is able to protect endothelial cells by a direct antioxidant effect. Toxicol. in Vitro. 2014, 28, 538-543.

18. Kang, S. R.; Park, K. I.; Park, H. S.; Lee, D. H.; Kim, J. A.; Nagappan, A.; Kim, E. H.; Lee, W. S.; Shin, S. C.; Park, M. K.; Han, D. Y.; Kim, G. S. Anti-inflammatory effect of flavonoids isolated from Korea Citrus aurantium L. on lipopolysaccharide-induced mouse macrophage RAW 264.7 cells by blocking of nuclear factor-kappa B (NF-κB) and mitogenactivated protein kinase (MAPK) signalling pathways. Food Chem. 2011, 129, 1721-1728.

19. Hertog, M. G. L.; Feskens, E. J. M.; Hollman, P. C. H.; Katan, M. B.; Kromhout, D. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet. 1993, 342, 1007-1011.

20. Testai, L.; Martelli, A.; Cristofaro, M.; Breschi, M. C.; Calderone, V. Cardioprotective effects of different flavonoids against myocardial ischaemia/reperfusion injury in Langendorff-perfused rat hearts. J. Pharm. Pharmacol. 2013, 65, 750-756.

21. Testai, L.; Pozzo, E. D.; Piano, I.; Pistelli, L.; Gargini, C.; Breschi, M. C.; Braca, A.; Martini, C.; Martelli, A.; Calderone, V. The Citrus Flavanone Naringenin Produces Cardioprotective Effects in Hearts from 1 Year Old Rat, through Activation of mitoBK Channels. Front. Pharmacol. 2017, 8, art. 71.

22. Kushi, L. H.; Doyle, C.; McCullough, M.; Rock, C. L.; Demark-Wahnefried, W.; Bandera, E. V.; Gapstur, S.; Patel, A. V.; Andrews, K.; Gansler, T. American Cancer Society Guidelines on nutrition and physical activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity. Ca. 2012, 62, 30-67.

23. Chen, J.; Chen, A. Y.; Huang, H.; Ye, X.; Rollyson, W. D.; Perry, H. E.; Brown, K. C.; Rojanasakul, Y.; Rnakin, G. O.; Dasgupta, P.; Chen, Y. C. The flavonoid nobiletin inhibits tumor growth and angiogenesis of ovarian cancers via the Akt pathway. Int. J. Oncol. 2015, 46, 2629-2638.

24. Srivastava, S.; Somasagara, R. R.; Hegde, M.; Nishana, M.; Tadi, S. K.; Srivastava, M.; Choudhary, B.; Raghavan, S. C. Quercetin, a Natural Flavonoid Interacts with DNA, Arrests Cell Cycle and Causes Tumor Regression by Activating Mitochondrial Pathway of Apoptosis. Sci. Rep. 2016, 6, 24049.

25. Shi, M. D.; Shiao, C. K.; Lee, Y. C.; Shih, Y. W. Apigenin, a dietary flavonoid, inhibits proliferation of human bladder cancer T-24 cells via blocking cell cycle progression and inducing apoptosis. Cancer Cell Int. 2015, 15, 33.

26. Smith, M. L.; Murphy, K.; Doucette, C. D.; Greenshields, A. L.; Hoskin, D. W. The Dietary Flavonoid Fisetin Causes Cell Cycle Arrest, Caspase-Dependent Apoptosis, and Enhanced Cytotoxicity of Chemotherapeutic Drugs in Triple-Negative Breast Cancer Cells. J. Cell Biochem. 2016, 117, 1913-1925.

27. Luo, H.; Daddysman, M. K.; Rankin, G. O.; Jiang, B. H.; Chen, Y. C. Kaempferol enhances cisplatin's effect on ovarian cancer cells through promoting apoptosis caused by down regulation of cMyc. Cancer Cell Int. 2010, 10, 16.

28. Song, J. M.; Lee, K. H.; Seong, B. L. Antiviral effect of catechins in green tea on influenza virus. Antivir. Res. 2005, 68, 66-74.

29. Sithisarn, P.; Michaelis, M.; Schubert-Zsilavecz, M.; Cinatl, J. Differential antiviral and anti-inflammatory mechanisms of the flavonoids biochanin A and baicalein in H5N1 influenza A virusinfected cells. Antivir. Res. 2013, 97, 41-48.

30. Thongnest, S.; Lhinhatrakool, T.; Wetprasit, N.; Sutthivaiyakit, P.; Sutthivaiyakit, S. Eriosema chinense: A rich source of antimicrobial and antioxidant flavonoids. Phytochem. 2013, 96, 353-359.

31. Katerere, D. R.; Gray, A. I.; Nash, R. J.; Waigh, R. D. Phytochemical and antimicrobial investigations of stilbenoids and flavonoids isolated from three species of Combretaceae. Fitoterapia. 2012, 83, 932-940.

32. Mbaveng, A. T.; Ngameni, B.; Kuete, V.; Simo, I. K.; Ambassa, P.; Roy, R.; Bezabih, M.; Etoa, F. X.; Ngadjui, B. T.; Abegaz, B. M.; Meyer, J. J. M.; Lall, N.; Beng, V. P. Antimicrobial activity of the crude extracts and five flavonoids from the twigs of Dorstenia barteri (Moraceae). J. Ethnopharmacol. 2008, 116, 483-489.

33. Arima, H.; Ashida, H.; Danno G. Rutin-enhanced Antibacterial Activities of Flavonoids against Bacillus cereus and Salmonella enteritidis. Biosci. Biotechnol. Biochem. 2002, 66, 1009-1014.

34. Fujita, M.; Shiota, S.; Kuroda, T.; Hatano, T.; Yoshida, T.; Mizushima, T.; Tsuchiya, T. Remarkable synergies between baicalein and tetracycline, and baicalein and beta-lactams against methicillin-resistant Staphylococcus aureus. Microbiol. Immunol. 2005, 49, 391-396.

35. Bahrin, L. G.; Apostu, M. O.; Birsa, L. M.; Stefan, M. The antibacterial properties of sulfur containing flavonoids. Bioorg. Med. Chem. Lett. 2014, 24, 2315-2318.

36. Bahrin, L. G.; Sarbu, L. G.; Hopf, H.; Jones, P. G.; Babii, C.; Stefan, M.; Birsa, L. M. The influence of halogen substituents on the biological properties of sulfur-containing flavonoids. Bioorg. Med. Chem. 2016, 24, 3166-3173.

37. Bahrin, L. G.; Hopf, H.; Jones, P. G.; Sarbu, L. G.; Babii, C.; Mihai, A. C.; Stefan, M.; Birsa, L. M. Antibacterial structure-activity relationship studies of several tricyclic sulfur-containing flavonoids. Beilstein J. Org. Chem. 2016, 12, 1065-1071.

38. Babii, C.; Bahrin, L. G.; Neagu, A. N.; Gostin, I.; Mihasan, M.; Birsa, L. M.; Stefan, M. Antibacterial activity and proposed action mechanism of a new class of synthetic tricyclic flavonoids. J. Appl. Microbiol. 2016, 120, 630-637.

Acta Chemica Iasi

The Journal of "Alexandru Ioan Cuza" University from Iasi

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 347 224 11
PDF Downloads 231 160 12