
Epithelium morphogenesis and oviduct development 
are regulated by significant increase of expression 
of genes after long-term in vitro primary culture – 
a microarray assays

Abstract
The correct oviductal development and morphogenesis of its epithelium are crucial factors influencing fe-
male fertility. Oviduct is involved in maintaining an optimal environment for gametes and preimplantation 
embryo development; secretory oviductal epithelial cells (OECs) synthesize components of oviductal fluid. 
Oviductal epithelium also participates in sperm binding and its hyperactivation. For better understanding 
of the genetic bases that underlay porcine oviductal development, OECs were isolated from porcine ovi-
ducts and established long-term primary culture. A microarray approach was utilized to determine the 
differentially expressed genes during specific time periods. Cells were harvested on day 7, 15 and 30 of in 
vitro primary culture and their RNA was isolated. Gene expression was analyzed and statistical analysis 
was performed. 48 differentially expressed genes belonging to “tube morphogenesis”, “tube development”, 
“morphogenesis of an epithelium”, “morphogenesis of branching structure” and “morphogenesis of bran-
ching epithelium” GO BP terms were selected, of which 10 most upregulated include BMP4, ARG1, SLIT2, 
FGFR1, DAB2, TNC, EPAS1, HHEX, ITGB3 and LOX. The results help to shed light on the porcine oviductal 
development and its epithelial morphogenesis, and show that after long-term culture the OECs still proli-
ferate and maintain their tube forming properties.
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Introduction
The correct oviductal morphogenesis and its epi-

thelium development are crucial factors influencing 
female fertility, as they are involved in both fertiliza-
tion and early embryo development. However, ge-
netic regulation of these processes in pigs remains 
to be elucidated.

The oviduct derives from the Müllerian duct, 
which originates from the intermediate mesoderm 
and starts to develop around E11.5 in mice [1]. Ini-
tially, embryos have both Müllerian and Wolffian 
ducts, thus they are anatomically undistinguish-
able. However, after the sexual differentiation, the 
Wolffian ducts degenerate in female embryos and 
the Müllerian duct further develops. In male em-
bryos this situation is opposite [2]. Significant 
genes involved in this process, such as Lim1, Lhx1, 
Pax2, Emx2, Wnt4, Wnt9b, Tcf2, Dach1 and Dach2, 
have been distinguished  [2, 3, 4]. Further develop-
ment results in oviduct, uterus and upper vagina 
formation and subsequent epithelial differentia-
tion, which likely remains under control of the Hox 
genes, especially Hoxa10, Hoxa11 and Hoxa13, as 
well as Wnt7a gene [2, 3].  The timing of epithelial 
differentiation varies between species; in humans it 
occurs in the fetal stage, while in mice it takes place 
postnatally [5]. Epithelial morphogenesis involves 
several events, such as apicobasal polarity and lu-
men formation, which can occur through epithelial 
folding, wrapping or invagination. Among many sig-
naling pathways engaged in tubulogenesis, the inte-
grin-mediated signaling pathway and FGF signaling 
pathway seem to be one of the most significant [6].

Four oviductal regions can be distinguished: the 
infundibulum, the ampulla, the isthmus and the 
uterotubal junction. Oviduct has two muscle coats 
(longitudinal and circular), a mucosa layer, which 
exhibits folds with a branch-like structure, and epi-
thelial lining [7, 8]. There are two types of epithelial 
cells in the oviduct: ciliated and secretory cells. The 
ciliated cells play a significant role in transporting 
gametes and the embryo, and their characteristics 
may vary between pig breeds [9, 10]. Secretory cells 
synthesize components of oviductal fluid, such as 
nutrients, cytokines, immunoglobulins and embry-
otropic factors, thus participate in providing an op-
timal environment for fertilization and promote the 
early embryo development [11]. The presence of 
stem-like cells in the oviductal epithelium has also 
been reported [12].

The oviductal role is invaluable in a successful 
pregnancy, however its detailed mechanism is be-
yond the scope of this paper. Aside from providing 
an optimal environment for gametes and preim-
plantation embryo development, oviduct guides 
sperm to fertilization site through rheotaxis, ther-
motaxis and chemotaxis [9]. Oviductal epithelial 
cells also bind sperm [13] and are involved in its 
hyperactivation [14]. 

For better understanding of the genetic bases that 
underlay porcine oviductal development and mor-
phogenesis of its epithelium, a long-term primary 
culture of porcine oviductal epithelial cells has been 
established, with microarray approach utilized to 
determine the differentially expressed genes during 
specific time periods. Such studies may be helpful 
in optimizing assisted reproduction techniques in 
pigs, which still remain less successful than in other 
species [15], and in understanding genetic events 
that lead to epithelial tube formation in pigs.

Materials and Methods
Animals

In this study, crossbred gilts (n=45) at the age of 
about nine months, which displayed two regular es-
trous cycles, were collected from a commercial herd. 
All the animals were checked daily for estrus behav-
ior and were slaughtered after reaching the anestrus 
phase of the estrus cycle. The uteri were then trans-
ported to the laboratory within 30 min at 38°C. 

Oviductal epithelial cells (OECs) selection and 
culture

Oviducts were washed twice in Dulbecco’s phos-
phate buffered saline (PBS) (137 mM NaCl, 27 mM 
KCl, 10 mM Na2HPO4, 2 mM KH2PO4, pH 7.4). Epithe-
lial cells were removed using sterile surgical blades. 
Then, the epithelium was incubated with collagenase 
I (Sigma Aldrich, Madison, USA), 1mg/mL in Dulbec-
co’s modified Eagle’s medium (DMEM; Sigma Aldrich, 
Madison, USA) for 1 h at 37oC. The cell suspension 
obtained from this digestion was filtered through 
40 µm pore size strainer to remove blood and single 
cells. The residue was collected by rinsing the strain-
er with DMEM. The cell suspension was centrifuged 
(200 x g, 10 min.). Next, the cells were washed in PBS 
and centrifuged again. Later, they were incubated 
with 0.5% Trypsin/EDTA (Sigma Aldrich, Madison, 
USA) at 37oC for 10 min. The reaction was stopped 
with fetal calf serum (FCS; Sigma Aldrich, Madison, 
USA). After incubation, cells where filtered and cen-
trifuged again. The final cell pellet was suspended in 
DMEM supplemented with 10% FCS, 100U/mL peni-
cillin, 100 µg/mL streptomycin and 1µg/mL ampho-
tericin B. The cells were cultured at 37oC in a humid-
ified atmosphere of 5% CO2. Once the OEC cultures 
attained 70–80% confluency, they were passaged by 
washing with PBS, digested with 0.025% Trypsin/
EDTA, neutralized by a 0.0125% trypsin inhibitor 
(Cascade Biologics, Portland, USA), centrifuged, and 
resuspended at a seeding density of 2x104 cells/cm2. 
The culture medium was changed every three days. 
The culture lasted 30 days.

RNA extraction from oviductal epithelial cells 
(OECs)

Oviductal epithelial cell were pooled and har-
vested at 24h, 7 days, 15 days and 30 days after 
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the beginning of culture. Total RNA was extracted 
from samples using TRI Reagent (Sigma, St Louis, 
MO, USA) and RNeasy MinElute cleanup Kit (Qiagen, 
Hilden, Germany). The amount of total mRNA was 
determined from the optical density at 260 nm, and 
the RNA purity was estimated using the 260/280 nm 
absorption ratio (higher than 1.8) (NanoDrop spec-
trophotometer, Thermo Scientific, ALAB, Poland). 
The RNA integrity and quality were checked on a 
Bioanalyzer 2100 (Agilent Technologies, Inc., Santa 
Clara, CA, USA). The resulting RNA integrity numbers 
(RINs) were between 8.5 and 10 with an average of 
9.2 (Agilent Technologies, Inc., Santa Clara, CA, USA). 
The RNA in each sample was diluted to a concen-
tration of 100 ng/μl with an OD260/OD280 ratio of 
1.8/2.0. From each RNA sample, 100 ng of RNA was 
taken for microarray expression assays.

Microarray expression analysis and statistics
Total RNA (100 ng) from each pooled sample was 

subjected to two rounds of sense cDNA amplifica-
tion (Ambion® WT Expression Kit). The obtained 
cDNA was used for biotin labeling and fragmenta-
tion by Affymetrix GeneChip® WT Terminal Labeling 
and Hybridization (Affymetrix). Biotin-labeled frag-
ments of cDNA (5.5 μg) were hybridized to the Affy-
metrix® Porcine Gene 1.1 ST Array Strip (48°C/20 
h). Microarrays were then washed and stained 
according to the technical protocol using the Affy-
metrix GeneAtlas Fluidics Station. The array strips 
were scanned employing Imaging Station of the Ge-
neAtlas System. Preliminary analysis of the scanned 
chips was performed using Affymetrix GeneAtlasTM 
Operating Software. The quality of gene expression 
data was confirmed according to the quality control 
criteria provided by the software. The obtained CEL 
files were imported into downstream data analysis 
software.

All of the presented analyses and graphs were 
performed using Bioconductor and R programming 
languages. Each CEL file was merged with a descrip-
tion file. In order to correct background, normalize, 
and summarize results, we used the Robust Multi-
array Averaging (RMA) algorithm. To determine the 
statistical significance of the analyzed genes, mod-
erated t-statistics from the empirical Bayes method 
were performed. The obtained p-value was correct-
ed for multiple comparisons using Benjamini and 
Hochberg’s false discovery rate. The selection of 
significantly altered genes was based on a p-value 
beneath 0.05 and expression higher than two fold. 

Differentially expressed genes were subjected 
selection by examination of genes involved in ovi-
ductal epithelium morphogenesis. The differential-
ly expressed gene list was uploaded to the DAVID 
software (Database for Annotation, Visualization 
and Integrated Discovery) [14]. Subsequently the 
relation between the genes belonging to chosen 
GO terms with GOplot package was analyzed [15]. 

The GoPlot package had calculated the z-score: the 
number of up-regulated genes minus the number of 
down-regulated genes divided by the square root of 
the count. This information allowed for estimating 
the change course of each gene-ontology term.

Moreover, interactions between differentially ex-
pressed genes/proteins belonging to the chosen GO 
terms were investigated by the STRING10 software 
(Search Tool for the Retrieval of Interacting Genes) 
[16]. The list of gene names was used as a query for 
an interaction prediction. The search criteria were 
based on co-occurrences of genes/proteins in sci-
entific texts (text mining), co-expression, and ex-
perimentally observed interactions. The results of 
such analyses generated a gene/protein interaction 
network, where the intensity of the edges reflected 
the strength of the interaction score.

Finally the functional interactions between genes 
that belongs to the chosen GO BP terms were inves-
tigated by REACTOME FIViz application to the Cy-
toscape 3.6.0 software. The ReactomeFIViz app is 
designed to find pathways and network patterns 
related to cancer and other types of diseases. This 
app accesses the pathways stored in the Reactome 
database, allowing to do pathway enrichment anal-
ysis for a set of genes, visualize hit pathways using 
manually laid-out pathway diagrams directly in 
Cytoscape, and investigate functional relationships 
among genes in hit pathways. The app can also 
access the Reactome Functional Interaction (FI) 
network, a highly reliable, manually curated path-
way-based protein functional interaction network 
covering over 60% of human proteins. 

Ethical approval
The research related to animal use has been com-

plied with all the relevant national regulations and 
instructional policies for the care and use of ani-
mals. Bioethical Committee approval no. 32/2012.

Results
Whole transcriptome profiling by Affymetrix mi-

croarray allows analyzing gene expression changes 
between 7, 15 and 30 days of porcine oviductal ep-
ithelial cells culture.  By Affymetrix® Porcine Gene 
1.1 ST Array Strip we examined expression of 12257 
transcripts. Genes with fold change higher then abs 
(2) and wit corrected p value lower than 0.05 were 
considered as differentially expressed. This set of 
genes consists of 2533 different transcripts. The 
first detailed analysis based on GO BP the identifi-
cation of differentially expressed genes belonging 
to the significantly enrichment GO BP terms.

DAVID (Database for Annotation, Visualization 
and Integrated Discovery) software was used for 
extraction of gene ontology biological process term 
(GO BP) that contains differently expressed tran-
scripts. Up and down regulated gene sets were sub-
jected to DAVID searching separately and only gene 
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sets where adj. p value were lower than 0.05 were 
selected.  The DAVID software analysis showed that 
differently expressed genes belongs to 657 Gene on-
tology terms. In this paper we focused on 48 genes 
that belongs to “tube morphogenesis”, “tube devel-
opment”, “morphogenesis of an epithelium”, “mor-

phogenesis of a branching structure” and “morpho-
genesis of a branching epithelium” GO BP terms. 
These sets of genes were subjected to hierarchical 
clusterization procedure and presented as heat-
maps (Fig. 1). The gene symbols, fold changes in 
expression, Entrez gene IDs and corrected p values 

Gene 
symbol

Fold. Change 
D15/D7

Fold. Change 
D30/D7

Fold. Change 
D30/D15

adjusted 
P.Value 

D15/D7

adjusted 
P.Value 

D30/D7

adjusted 
P.Value 

D30/D15
Gene ID

BMP4 4,274223 3,01201 1,551199 4,00E-05 9,03E-05 0,007449 100113425
ARG1 4,347305 1,136755 0,748778 0,000869 0,698683 0,310832 100628107
SLIT2 4,503981 3,402733 7,662301 0,000117 0,000211 1,00E-05 100515328
FGFR1 4,599714 5,650775 8,942976 1,33E-05 3,63E-06 6,88E-07 100153248
DAB2 4,822568 8,861786 15,85513 0,000774 0,000116 2,25E-05 100519746
TNC 6,57267 8,352323 8,773467 1,83E-05 4,91E-06 2,42E-06 397460

EPAS1 7,629974 6,655106 16,82792 8,57E-06 5,17E-06 5,84E-07 100037272
HHEX 9,447447 11,82395 11,30739 2,69E-05 9,59E-06 6,25E-06 397232
ITGB3 12,67365 13,15962 10,9347 4,27E-06 1,55E-06 8,03E-07 397063

LOX 29,0517 43,84613 46,65297 7,88E-06 2,86E-06 1,06E-06 100525278

TABLE 1 Gene symbols, fold changes in expression, Entrez gene IDs and corrected p values of studied genes

FIGURE 1 Heat map representation of differentially expressed genes belonging to the  to “tube morphogenesis”, “tube 
development”, “morphogenesis of an epithelium”, “morphogenesis of a branching structure” and  “morphogenesis of a 
branching epithelium” GO BP terms. Arbitrary signal intensity acquired from microarray analysis is represented by co-
lors (green, higher; red, lower expression). Log2 signal intensity values for any single gene were resized to Row Z-Score 
scale (from -2, the lowest expression to +2, the highest expression for single gene)
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of that genes were shown in table 1. To investigate 
the direction of changes between each selected GO 
BP term, its z-score (the ratio of up- and down-reg-
ulated genes in each GO BP terms) was calculated. 
The z-scores with the representation of up- and 
down-regulated genes were shown in series of cir-
cle diagrams (Fig. 2).

In Gene Ontology database, genes that formed one 
particular GO group can also belong to other different 
GO term categories. For this reason, we explore the 
gene intersections between selected GO BP terms. The 
relation between those GO BP terms was presented as 
circle plot (Fig. 3) as well as heatmap (Fig. 4).

STRING software was used to generate interac-
tion network among differentially expressed genes 
belonging to each of selected GO BP terms. This 
prediction method provided us a molecular interac-
tion network formed between protein products of 
studied genes (Fig. 5). Finally we investigated the 
functional interactions between chosen genes with 
REACTOME FIViz app to Cytoscape 3.6.0 software. 
The results were shown in figure 6.

Discussion
To investigate which genes are involved in por-

cine oviductal development and its epithelial mor-
phogenesis, we utilized the whole transcriptome 
profiling method in porcine OEC long-term primary 
culture, and compared gene expression on day 7, 15 
and 30. We have found 48 differentially expressed 

genes belonging to “tube morphogenesis”, “tube 
development”, “morphogenesis of an epithelium”, 
“morphogenesis of branching structure” and “mor-
phogenesis of branching epithelium” GO BP terms. 
However we would like to focus on 10 genes that 
exhibited the most significant increase in expres-
sion. These genes include BMP4, FGFR1, TNC, ITGB3, 
DAB2, SLIT2, HHEX, EPAS1, LOX and ARG1, most of 
which are involved in multiple signaling pathways 
associated with many developmental processes in 
the entire organism.

Amongst the aforementioned genes, the BMP4 
gene can be distinguished. It is a part of TGFβ super-
family of factors and is involved in many develop-
mental processes, such as cartilage and bone forma-
tion. It acts via SMAD signaling pathway, influencing 
gene expression [19]. Also, the role of BMP4 in repro-
duction has been reported, as it participates in germ 
cell proliferation, migration, gametogenesis, follicu-
logenesis and steroidogenesis [20]. Its expression 
occurs in the rat theca cells and ovarian and uterine 
epithelium, in mice granulosa and theca cells and in 
human oocyte and granulosa cells [21, 22, 23, 24]. 
Moreover, Tanwar et al. [24] reported BMP4 expres-
sion in murine oviductal epithelial cells, while we ob-
served an increase in this gene’s expression in por-
cine OECs on day 7 and 15 of primary in vitro culture. 
This suggests that this factor may be involved in OEC 
development as well, aside from its multifunctional 
role during other tissues morphogenesis.

FIGURE 2 The circle plot showing the differently expressed genes and z-score of  the “tube morphogenesis”, “tube 
development”, “morphogenesis of an epithelium”, “morphogenesis of a branching structure” and  “morphogenesis of 
a branching epithelium”  GO BP terms. The outer circle shows a scatter plot for each term of the fold change of the 
assigned genes. Red circles display up- regulation and blue ones down- regulation. The inner circle shows the z-score 
of each GO BP term. The width of the each bar corresponds to the number of genes within GO BP term and the color 
corresponds to the z-score
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FIGURE 3 The representation of the mutual relationship of differently expressed genes that belongs to the “tube mor-
phogenesis”, “tube development”, “morphogenesis of an epithelium”, “morphogenesis of a branching structure” and  
“morphogenesis of a branching epithelium”  GO BP terms. The ribbons indicate which gene belongs to which catego-
ries. The middle circle represents logarithm from fold change (LogFC) between D7/D1, D15/D1 and D30/D1 respecti-
vely. The genes were sorted by logFC from most to least changed gene

FIGURE 4 Heatmap showing the gene occurrence between differently expressed genes that belongs to the “tube mor-
phogenesis”, “tube development”, “morphogenesis of an epithelium”, “morphogenesis of a branching structure” and  
“morphogenesis of a branching epithelium”  GO BP terms. The red color is associated with gene occurrence in the GO 
Term. The intensity of the color is corresponding to amount of GO BP terms that each gene belongs to
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FIGURE 5  STRING-generated interaction occurrence between differently expressed genes that belongs to the “tube mor-
phogenesis”, “tube development”, “morphogenesis of an epithelium”, “morphogenesis of a branching structure” and  “mor-
phogenesis of a branching epithelium”  GO BP terms. The intensity of the edges reflects the strength of interaction score

FIGURE 6 Functional interaction (FI) between  differently expressed genes that belongs to the “tube morphogenesis”, 
“tube development”, “morphogenesis of an epithelium”, “morphogenesis of a branching structure” and  “morphogene-
sis of a branching epithelium”  GO BP terms. In following figure “->” stands for activating/catalyzing, “-|” for inhibition, 
“-” for FIs extracted from complexes or inputs, and “---” for predicted FIs
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Based on interaction visualization (Fig. 5) BMP4 
interacts with FGFR1, which is a receptor for fibro-
blast growth factors, that are involved in many pro-
cesses, such as cell growth, maturation and division, 
angiogenesis and embryogenesis [25]. FGFR1 ex-
pression gradually increased during in vitro culture, 
reaching the highest level on day 30; therefore it is 
another gene upregulated in OECs that is not spe-
cific for oviductal epithelium and is also expressed 
during many other developmental events. It has 
been reported, that FGFR1 is crucial for correct neu-
ral tube development [26]. Pond et al. have shown 
that it is engaged in mammary gland branching 
morphogenesis [27]. As FGF signaling pathway is 
well known to be involved in tubular morphogene-
sis, increased expression of FGFR1 during long-term 
OECs in vitro culture suggests that it also plays a role 
in epithelial tube development in porcine oviducts, 
and that the OECs maintain tube forming properties 
after long-term in vitro culture. Apart from that, this 
receptor’s expression occurs e.g. in bovine corpus 
luteum [28] and porcine endometrial epithelial 
cells, as well as in stroma and glands [29].

TNC also exhibited increasing expression during 
the culture period, which may be due to the role of 
this protein in regulating cell adhesion. It also influ-
ences proliferation and interacts with fibronectin, 
integrin and growth factors. Tenascin C is known 
to be expressed in embryos, especially at regions of 
branching morphogenesis or epithelial-mesenchy-
mal interactions, and in adults in stem cell niches 
and in inflammation sites [30]. Its upregulation may 
contribute to cell migration and tube formation, 
suggesting that TNC is another important factor en-
gaged in oviductal development. Furthermore, Te-
nascin C may act via integrin ITGB3 gene product, 
a subunit of a platelet membrane adhesive receptor 
complex GP IIb/IIIa, which also exhibited upregula-
tion during our studies. TNC and ITGB3 interaction 
has been described e.g. in breast cancer cells, where 
it resulted in FAK/Akt-473 pathway activation and 
cell migration [31]. In this case, such interaction 
may indicate tube forming activity in OECs, as in-
tegrin-mediated signaling pathway is known to be 
involved in epithelial apicobasal polarization – a 
crucial event in tubal development [6].

Apart from ITGB3-Tenascin C interaction, there is 
also a possible functional interaction between ITGB3 
and DAB2 (Fig. 6.), expression of which is upregulat-
ed in OECs culture, reaching the highest level on day 
30. DAB2 is known to be involved in correct female 
reproductive tract functioning, as it is expressed in 
normal ovarian epithelial cells [32]. Hocevar et al. 
[33] demonstrated its important role in TGFβ sig-
naling pathway, where it serves as a bridge between 
TGFβ receptors and Smad proteins and the study 
on bone marrow derived macrophages has shown 
that DAB2 induces cell adhesion and spreading [34]. 
These results indicate this protein’s important role 

in multiple signaling pathways and here we show its 
involvement in oviductal epithelium morphogene-
sis as well.

The transcription factors’ role in OECs develop-
ment also must be addressed, as they positively or 
negatively regulate many downstream genes’ ex-
pression. For example, PAX2 is a transcription factor 
known to be involved in oviduct morphogenesis and 
is expressed in normal OECs [35]. However, we have 
observed a significant upregulation in other tran-
scription factors’ expression: HHEX and EPAS1, both 
engaged in endothelial cell development [36, 37]. 

HHEX is a transcription factor present in e.g. he-
matopoietic lineages [36], liver, thyroid and lungs 
[38]. In OECs long term in vitro culture it main-
tained relatively similar level on day 7, 15 and 30. 
This protein is known regulator of cell proliferation 
and differentiation – in prostatic and breast can-
cer cells its upregulation resulted in decreased cell 
migration by endoglin expression regulation [39]. 
HHEX is engaged in many developmental processes, 
including liver, heart, thyroid and pancreatic devel-
opment [38] and our findings suggest that it may 
also be involved in oviductal morphogenesis. EPAS1, 
on the other hand, is a gene encoding HIF2A, a tran-
scription factor involved in gene expression under 
hypoxic conditions [37] and we observed its highest 
level on day 30 of OEC’s culture. EPAS1 is expressed 
in highly vascularized tissues and endothelial cells, 
thus its role in vasculogenesis has been suggested 
[37]. However its involvement in oviduct develop-
ment has not yet been reported.

We have also observed differential expression of 
enzyme-coding genes – LOX and ARG1, where LOX’s 
expression has risen gradually during in vitro cul-
ture and ARG1 was upregulated on day 7. LOX initi-
ates crosslinking of collagen and elastin and plays 
a role in stabilization of extracellular matrix [40]. 
Thus, it is expressed in tissues containing collagen 
or elastic fibers and is crucial for their stability. 
Apart from that, it binds with TGFβ1 and affects 
its signaling [41]. Therefore, it is an another com-
ponent of multifunctional signaling pathway up-
regulated during this study. The study on gastric 
cancer cells indicates that LOX is involved in epithe-
lial-mesenchymal transition under hypoxic condi-
tions [42] and increases cellular proliferation, mi-
gration and invasion in endometrial epithelial cells 
[43]. Therefore, it is possible that it acts in a similar 
manner in OECs. The other aforementioned gene, 
ARG1, encodes arginase, which is well known to be 
involved in urea cycle and is expressed in the liver 
[44]. Apart from that, it had been demonstrated that 
its upregulation increases rat aortic smooth muscle 
cells proliferation [45]. Arginase I expression also 
occurs in highly regenerative mice tissues and pro-
vides necessary polyamine synthesis for effective 
development [46]. Therefore, we might suspect that 
it also affects initial steps of OEC morphogenesis. 
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SLIT proteins are known regulators of cell migra-
tion and apoptosis and their expression has already 
been reported in human and sheep ovaries [47], 
human endometrium and oviductal epithelial cells. 
It is suspected that these proteins negatively regu-
late a tubal embryo implantation, however there are 
further studies needed to test this hypothesis [48]. 
SLIT2 connection with tubular development in duc-
tal morphogenesis of mammary glands has already 
been investigated [49], which might be a reason 
why we have observed its increased expression on 
day 30 of OECs in vitro culture. 

Taken together, our findings show that oviductal 
epithelial cells actively proliferate after long term 
in vitro culture. We have observed a significant in-
crease in expression of genes belonging to “tube 
morphogenesis”, “tube development”, “morphogen-
esis of an epithelium”, “morphogenesis of branch-
ing structure” and “morphogenesis of branching 
epithelium” GO BP terms, which suggests that OECs 
maintain their tube forming properties. The cur-
rent knowledge on epithelial tubular development 
comes mostly from studies on MDCK kidney cells 
and breast MCF10A cells [6] and here we provide a 
novel insight into this process in porcine oviductal 
epithelial cells. 
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