
Endocrine disruptors: General characteristics, 
chemical nature and mechanisms of action. A review.

Abstract
Over recent decades, different types of industrially manufactured chemicals have become widespread 
environmental contaminants with potential to interfere with the synthesis, secretion, transport, binding or 
elimination of natural hormones in the body. These chemical substances were named endocrine disruptors 
(EDs). The main route of exposure to EDs is the ingestion of contaminated food and water. EDs are very 
dangerous, because they have long half-life, stay present in the environment for years and may concentrate 
at great distances from the site where were produced. The group of EDs is heterogeneous and contains in-
dustrial lubricants, solvents, plastics, plasticizers, pesticides, fungicides, drugs, but also natural chemicals. 
The mechanisms of EDs action are difficult to predict, many substances act by interfering with the estrogen 
receptors (ER), androgen receptor (AR), thyroid receptors (TRs) and aryl hydrocarbon receptor (AhR), but 
they can also influence hormone synthesis or can have effect on epigenetic mechanisms. Further research 
is necessary to improve knowledge about EDs and their metabolites, and to identify endocrine-disruptive 
potential of chemicals, those replacing current EDs before they are widely distributed.
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General characteristics of endocrine 
disruptors (EDs)

Since the mid-20th century, different types of in-
dustrially manufactured pesticides, chemicals, plas-
tics, detergents, paints and cosmetics have become 
widespread environmental contaminants with po-
tential to disrupt the closed feedback loops of the 
hormonal and homeostatic systems and consequent-
ly cause adverse health effects in an intact organism, 
or its progeny. For this ability, they were named en-
docrine disruptors (EDs) [1, 2]. U.S. Environmental 
Protection Agency (EPA) defined an endocrine dis-
ruptor as an agent that interferes with the synthesis, 
secretion, transport, binding or elimination of natu-
ral hormones in the body that are responsible for the 
maintenance of homeostasis, reproduction, develop-
ment and/or behaviour [3]. Exposure of human and 
animals to EDs may occur in a variety of ways. For 
majority of these chemicals, the main source of ex-
posure is via food, drinking water, breathing contam-
inated air or contacting contaminated soil [4, 5, 6].

Endocrine disruptors produce their effects by 
mimicking, antagonizing or altering endogenous 
steroid levels, via changing rates of their synthesis 
or metabolism or expression and action at recep-
tor targets. The EDs have some characteristics that 
potentiate their hazards. Many of the EDs are lipo-
philic, so they have very low water solubility and 
accumulate in adipose tissue [7, 8]. Very danger-
ous are mixtures of the EDs, they can influence one 
another in an additive, adverse, or synergistic way. 
Several studies have shown that chemicals have 
no observed effect level (NOEL) individually, while 
when present simultaneously as a mixture they 
show adverse effect disproving the concept of NOEL 
and bring more attention toward mixture studies 
[9, 10]. Most common is a non-linear dose response 
effect of the disruptor. Paradoxically, low concen-
trations can achieve greater effects than high doses 
[11, 12]. Further, the EDs show disparate responses 
at different stages of life, dependent on physiologi-
cal concentrations of hormones, challenging current 
risk assessment methodologies, which are not in 
consonance with life-stage changes [13, 14]. More-
over, these metabolites are not taken into account 
when the parent compounds are administered as is 
done in the majority of in vitro experiments [15]. 

Chemical nature of endocrine disruptors
The group of known EDs is extremely heteroge-

neous. The EDs can be classified in two categories: 
1) Those that are synthesized. These can be 

grouped as follows:
a) 	 synthetic substances used as industrial lu-

bricants and solvents, and their by-products: e.g. 
polychlorinated biphenyls (PCBs), polybrominated 
diphenyl ethers (PBDE) and dioxins e.g. 2,3,7,8-tet-
rachlorodibenzo-p-dioxin (TCDD), decabromodi-
phenylethane (DBPDE)

b)	 plastics: bisphenols – e.g. bisphenol A (BPA) 
and bisphenol S (BPS) 

c)  	 plasticizers: e.g. phthalates
d) 	 pesticides: e.g. atrazine, cypermethrin, 

dichlordiphenyltrichlorethane (DDT), dieldrin, 
methoxychlor (MTX) and its metabolites e.g. 
2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane 
(HPTE), endosulphan

e)	 fungicides: e.g. vinclozolin (VCZ), dicarbox-
imid, hexachlorbenzene (HCB)

f)	 and drugs: e.g. diethylstilbestrol (DES) and 
ethinyloestradiol (EE) as well as non-steroidal an-
ti-inflammatory drugs (NSAID) and acetaminophen

2)   Those that occur naturally. 
a)	 natural chemicals such as a phytoestrogens 

e.g. genistein (2).

Mechanisms of action of EDs 
Given the complexity of endocrine system, the 

mechanisms of action of EDs are difficult to pre-
dict [16]. Many of the EDs are substances that act 
by interfering with the estrogen receptors (ER), an-
drogen receptor (AR), thyroid receptors (TRs) and 
progesterone receptors, among others [2]. 

Effect on estrogen, androgen and thyroid 
receptors

Following binding to a receptor the EDs can trig-
ger two types of responses: a hormonal response 
that is termed an agonistic effect, or a lack of hor-
monal response that is termed an antagonistic ac-
tion. Agonistic effects of methoxychlor (MTX), an 
organochlorine pesticide used as an insecticide that 
was intended to replace DDT, have been reported 
for the estrogen receptor subtypes ERα and ERβ, 
whereas an opposite response was noted for the 
androgen receptor [17, 18, 19]. A similar anti-an-
drogenic effect has been noted for environmental 
polluting chemical 2,3,7,8-tetrachlorodibenzo-p-di-
oxin (TCDD) that has been shown to be an inhibitor 
or antagonist of hormone synthesis [20]. It is im-
portant to highlight that the EDs exhibit multiple 
hormone-binding activities irrespective of binding 
to hormonal receptors. For example, the DDT is an 
agonist for the estrogen receptor, whereas one of 
its metabolites is an anti-androgen [21]. BPA is a 
thyroid hormone antagonist in addition to its est-
rogenic and androgenic activity [22, 23]. BPA and 
other EDs interfere with thyroid hormone (TH) 
and thyroid hormone stimulating hormone (TSH) 
signalling via a majority of pathways that result in 
alteration of deiodinase activity, inhibition of TH ex-
cretion and/or metabolism, blockage of iodine up-
take by thyroid cells, competitive inhibition of the 
thyroid transport protein TTR and antagonism of 
complexes that originate from the thyroid hormone 
responsive elements (TREs) [24, 25]. The structural 
similarity of TH with specific TH-EDs, namely bro-
minated flame retardants, hydroxylated polychlo-
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rinated biphenyls (PCB) metabolites, and dioxins 
(PCDD) results in binding the TH transport protein 
TTR with a high affinity and consequently in inhibi-
tion of T4-TTR binding [26, 27]. 

Effect on aryl hydrocarbon receptor
At the molecular level, the EDs can affect the 

expression of steroid and sex hormone related en-
zymes by inducing their corresponding transcrip-
tion, via binding to nuclear receptors. Notably 
organochlorine pesticides and dioxins have been 
documented to bind with considerable potency to 
the aryl hydrocarbon receptor (AhR) that induces 
the expression of CYP1 gene that in turn metabolizes 
estradiol (E2) to hydroxylated derivatives [28, 29]. 
The AhR is present in cytoplasm and binds with at 
least three proteins (chaperon protein HSP90, reg-
ulatory protein P23 and immunophilin-like protein 
XAP20). These proteins keep AhR in a state respon-
sive to ligand binding. In the absence of ligand, AhR 
is bound to heat shock protein Hsp90. Regulatory 
proteins are displaced when ligand binding occurs, 
and the AhR enters the nucleus where it complexes 
and heterodimerizes with its nuclear partner hydro-
carbon receptor nuclear translocator (Arnt) [30]. 
Heterodimer, which is formed, acquires the ability 
to bind specific DNA enhancer sequences known 
as xenobiotic responsive element (XRE), causing 
induction of enzyme, enhancing metabolism of en-
dogenous hormone [31, 32]. Generally, products of 
these genes belong to one or two broad categories, 
drug-metabolizing enzymes and growth-regula-

tory proteins. The most studied AhR-target genes 
are cytochrome P450 1A1, CYP 1A1, CYP1A2, and 
CYP1B1, and oncogenes [33]. 

Effect on hormone synthesis and metabolism
Some EDs are also capable of modifying hormone 

bioavailability by interfering with its secretion and 
transport or disrupting the enzymatic pathways in-
volved in hormone synthesis and metabolism [34, 
35]. For instance, in either sex, androgens give rise 
to oestrogens through aromatase, so together they 
play a vital role in homeostasis [36]. Those EDs that 
interfere with aromatase (BPA and atrazine) stim-
ulate its activity [37, 38, 39], while DDT and phtha-
lates inhibit it [34, 40]. Recently, many virilising 
EDs (e.g. phthalates and BPA) have been found to be 
powerful cyclooxygenase inhibitors, reducing pros-
taglandin synthesis, and this might be the foremost 
mechanism by which they exert their effects [41]. 

Effect on epigenetic mechanisms
Some EDs, e.g. diethylstilbestrol (DES) and meth-

oxychlor (MTX), can also have epigenetic effects; 
they can cause changes in gene function in the ab-
sence of DNA sequence alterations. Notably, epige-
netic effects are mediated by transcription factors 
that repress or enhance the transcription of specific 
genes. The main mechanisms include DNA methyla-
tion, posttranslational modifications of histone pro-
teins (acetylation and deacetylation) and non-cod-
ing RNA [42, 43, 44]. DNA methylation leads to a 
reduction of gene expression, since it affects binding 

FIGURE 1 Endocrine disruptors and their mechanisms of action. DBDPE – decabromodiphenylethane, MTX - methoxy-
chlor, HPTE - 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane, TCDD - 2,3,7,8-tetrachlorodibenzo-p-dioxin, DDT - dichlo-
rodiphenyltrichloroethane and metabolite
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of transcription factors to the DNA [45]. Posttrans-
lational modifications of the histone proteins at spe-
cific amino acid residues, such as lysine, may alter 
the structure and function of chromatin [46]. It has 
been accepted that acetylation of histones results in 
the activation of transcription because of the relaxa-
tion of chromatin, whereas deacetylation results in 
the silencing of genes and transcriptional repression. 
Non-coding RNAs are transcripts of sequences that 
do not encode proteins but regulate the expression 
of genes in the cis and trans manner. They are in-
volved in specific functions such as X-chromosome 
inactivation, genomic imprinting and developmental 
patterning and differentiation [47]. The DES can acti-
vate expression of immediate early genes in neonatal 
development such as c-fos, c-jun, c-myc and lacto-
ferrin that are upregulated in childhood [48]. This 
effect was accompanied by hypomethylation of the 
promoter region of the lactoferrin gene in adult uter-
us [49], whereas when the animals were exposed to 
the same interval during adulthood, such pattern of 
methylation was not observed [50]. Organochlorine 
pesticide MTX causes epigenetic changes in the ova-
ry. Hypermethylation in ERβ promoter sequence as 
an impact of MTX was described. The extent of DNA 
methylation in the promoter regions appears to be 
age-dependent. With regard to the gene targets that 
are methylated by MTX, genome-wide methylation 
analyses have indicated that majority of candidate 
genomic regions include transcription factors and 
ribosomal proteins [51]. 

Conclusion
This paper has reviewed the evidence regarding 

to EDs and their general characteristics, chemical na-
ture and basic mechanisms of action. Endocrine dis-
ruption is a serious public problem that must not be 
ignored. It is necessary to remove these substances 
from the environment; for instance replace plastics 
by glass, reduce consumption of fatty animal prod-
ucts and prefer pesticides free food. Further research 
is necessary to improve knowledge about known EDs 
and their metabolites, and to identify endocrine-dis-
ruptive potential of chemicals, those replacing cur-
rent EDs before they are widely distributed. 
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