

Current Issues in Pharmacy and Medical Sciences

Formerly ANNALES UNIVERSITATIS MARIAE CURIE-SKLODOWSKA, SECTIO DDD, PHARMACIA

Obtaining the tbf gene which encodes immunodominant epitopes of pathogenic cholera strains

Yulia Bazarnova*, Tatiana Bolotnikova, Ekaterina Aronova

Higher School of Biotechnology and Food Technology, Peter the Great Saint Petersburg State Polytechnical University

ARTICLE INFO

Received 06 November 2018 Accepted 08 February 2019

Keywords:

candidate cholera vaccine, hybrid tbf gene, Sanger sequencing, protein design, TBF recombinant protein, immunodominant epitopes, Vibrio cholerae.

ABSTRACT

We experimentally carried out the synthesis of the tbf gene that encodes highly-immunogenic epitopes of pathogenic cholera strains, through the cloning of the tbf gene in pGEM-T Easy plasmid. Moreover, we tested the hybrid gene sequence for absence of mutations, using the Sanger sequencing. We also calculated the nucleatic sequence of the tbf gene. The obtained results have both scientific and practical significance.

INTRODUCTION

Cholera is an intestinal infection disease that rapidly dehydrates the human organism. It is caused by the bacterium of the *Vibrio cholerae* species, namely, toxigenic serogroup O1 and less commonly, O139. Cholera is characterized by a fecal-oral transmission route (more rarely human-to-human direct transmission) affecting the small bowel, and symptoms that include watery diarrhea, vomiting, rapid loss of water and electrolytes with various ranges of dehydration up to hypovolemic shock.

The cholera toxin (exotoxin) is responsible for the disease symptoms and its rapid evolution, and is a key factor of its pathogenicity.

As of today, scientists have come to a conclusion that oral immunization is the most efficient immune protection from cholera. Along with the developed attenuated and inactivated oral anti-cholera vaccines, recombinant vaccines based on epitopes of bacterial antigens occupy leadership positions for cholera treatment. These vaccines induce a pronounced immune response and depress the bacterial transcytosis, which is a key factor for the disease evolution.

The object under study in this work is the *tbf* gene that encodes immunodominant epitopes of proteins of pathogenic cholera strains TcpA and B(rBS), as well as an area which provides antigen penetration through the epithelium of the stomach wall.

* Corresponding author

e-mail: j.bazarnowa2012@yandex.ru

The TcpA protein is a component of a toxin-coregulated adhesion pilus, and forms polymers from subunits of 20.5 kDa [1]. This protein is a factor in pathogen colonization [2]. Toxin-coregulated piles are important protective antigens, which possess well-pronounced protective properties [3].

The subunit of cholera exotoxin B (rBS) is a pentamer, each sub-subunit of which is presented as a polypeptide chain consisting of 103 amino acid residues [4]. The protein contains antigenic determinants [5], which induce neutralization antibodies.

The neonatal FcRn-receptor is a receptor of the Fc fragment that forms a heterodimer by non-covalent interaction of alpha-chain with beta-2 microglobulin [6]. At oxygen hydrolysis, the pH receptor bounds the segment that connects CH2- and CH3-domains of antibodies of the IgG class [7]. After antibody bonding, the receptors activate a cascade of reactions for pathogen elimination by antibody-dependent phagocytosis [8].

Thus, the vaccine, which contains purified immunogenic protein, is stable and safe, its chemical properties are well-studied, and it does not contain any additional proteins and nucleic acids that might cause undesirable effects in the host organism.

The aim of this work is to inform readers of a means of replicating the *tbf* gene that encodes immunodominant epitopes of pathogenic cholera strains.

The work was performed at Laboratory No. 6 "Genetic engineering of vaccines" of the State Research Institute of

Highly Pure Biopreparations of the Russian Federal Medical-Biological Agency (FMBA), Saint-Petersburg, Russia.

MATERIALS AND METHODS

Objects under study

The gene, which encodes TBF recombinant protein, was obtained through chemical synthesis. Synthesis of sequence of the calculated gene that encodes the TBF protein, was performed by applying the polymerase chain reaction technique, using overlapping oligonucleotides. These oligonucleotides were synthesized by by employing the DNA synthesizer ASM-800 (BIOSSET, Russia). The main requirements for primers were the following: length not more than 60 nucleotides, and hybridization segments not more than 20 nucleotides. Beyond the aforementioned, there should not be long segments with repeated G or C. In total, for the synthesis of the gene that encodes the TBF protein of 2085 nucleotide pairs, we used 77 primers. The synthesized sequence was obtained from agarose gel, by means of electrophoresis, and cloned in the plasmid vector pGEM-T Easy. We performed the blunt-end cloning. After sequencing utilizing the capillary sequencer Applied Biosystems 3500/3500xL Genetic Analyzer (Applied Biosystems, USA), the fragments were amplified in a thermocycler for amplification - C1000 ThermalCycler (Bio-Rad, USA). In the terminal gene segments, we included restriction sites XhoI and NdeI for further cloning in plasmid pET28a (+).

The vector map is presented in Figure 1.

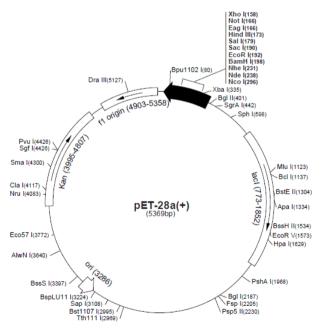


Figure 1. Circular pET28a (+) plasmid map [9]

The expression plasmid comprises the replication origin, promoter of T7 phage polymerase, lac-operator, kanamycin-resistance gene, start codon for translation of cloned fragments and a fragment which encodes polyhistidine located in the reading frame at the N-end of the sequence. Hence, any nucleatic sequence cloned in the vector is expressed as a polyhistidine-tagged protein as a matter of convenience

for its further purification by means of immobilized metal affinity chromatography. For lac-operon operation, the plasmid contains a fragment that encodes the lactose repressor lac.

The gene cloning in the vector was performed via the XhoI and NdeI restriction sites.

For the genetic engineering, we used *E. coli* DH10B/R (Gibko BRL, USA) cells with F-mcrA Δ(mrr-hsdRMS-mcrBC) φ80dlacZΔM 15 ΔlacX74 deoR recA1 endA1 araD139 Δ(ara,leu)769 galUgalKλ- rpsLnupG genotype.

For the expression of the gene that encodes the TBF protein, we employed E.coli BL21 Star (DE3) cells with the F- ompThsdSB (rB-mB-) galdcm rne131 (DE3) genotype that contains in its genome, λ De3 lysogen and rne131 mutation. The mutated gene rne (rne131) encodes reduced RNAase E, which decreases the intracellular destruction of mRNA. This results in the enhancement of its fermentation stability. Of note, lon- and ompT- mutations in protease genes allow the possibility to obtain large amounts of non-proteolyzed recombinant proteins.

Research methods

Synthesis of sequence of the calculated gene that encodes TBF protein, was performed by means of the polymerase chain reaction technique and the use of overlapping oligonucleotides. These oligonucleotides were synthesized by means of the DNA synthesizer ASM-800 (BIOSSET, Russia). The main requirements for the primers were the following: length not more than 60 nucleotides and hybridization segments not more than 20 nucleotides. Moreover, there should not be long segments with repeated G or C. In total, for the synthesis of gene that encodes the TBF protein of 2085 nucleotide pairs, we used 77 primers. The synthesized sequence was obtained from agarose gel, through electrophoresis, and cloned in the plasmid vector pGEM-T Easy. We performed the blunt-end cloning. After sequencing via the capillary sequencer Applied Biosystems 3500/3500xL Genetic Analyzer (Applied Biosystems, USA), the fragments were amplified in a thermocycler for amplification C1000 ThermalCycler (Bio-Rad, USA). In the terminal gene segments, we included restriction sites XhoI and NdeI for further cloning in plasmid pET28a(+).

For the design of TBF recombinant protein, we accessed NCBI databases (www.ncbi.nlm.nih.gov).

RESULTS

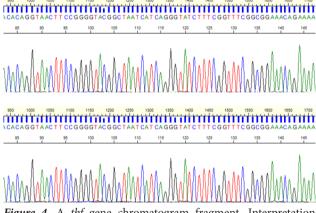
For the design of the TBF recombinant protein, we used the most protective epitopes of bacterial antigens: subunit of B cholera exotoxin, protein of cholera A pilus, and domain, which is a ligand to Fc-receptors at the stomach wall. The selected consensus segments, common for *V. cholerae* pathogenic strains, were analyzed for T and B cell epitopes. During the analysis, we employed the following software: Bepipred Linear Epitope Prediction 2.0 and IEDB Analysis Resource. The obtained amino acid sequence of TBF recombinant protein (695 amino acid residues) is presented in Figure 2.

Vol. 32, No. 3, Pages 130-133

	2 <u>0</u> KFVKEEHDKK				6 <u>0</u> RAIDSQIMTK
7 <u>0</u> AAQSLNSIQV	8 <u>0</u> ALTQTYRGLG	9 <u>0</u> NYPATADATA	10 <u>0</u> ASKLTSGLVS	11 <u>0</u> LGKISSDEAK	12 <u>0</u> NPFNGTNMNI
13 <u>0</u> FSFPRNAAAN	14 <u>0</u> KAFAISVDGL		16 <u>0</u> SVGDMFPYIA		
19 <u>0</u> AAETGVGVIK	20 <u>0</u> SIAPASKNLD	21 <u>0</u> LTNITHVEKL	22 <u>0</u> CKGTAPFGVA	23 <u>0</u> FGNSGGGGG	24 <u>0</u> GGMIKLKFGV
25 <u>0</u> FFTVLLSSAY	26 <u>0</u> AHGTPQNITD		28 <u>0</u> YTLNDKIFSY		
31 <u>0</u> FQVEVPGSQH	32 <u>0</u> IDSQKKAIER		34 <u>0</u> TEAKVEKLCV		
37 <u>0</u> GGGGGASTKG	38 <u>0</u> PSVFPLAPSS		40 <u>0</u> GCLVKDYFPE		
43 <u>0</u> VLQSSGLYSL	44 <u>0</u> SSVVTVPSSS		46 <u>0</u> NHKPSNTKVD		
49 <u>0</u> ELLGGPSVFL	50 <u>0</u> FPPKPKDTLM		52 <u>0</u> VVDVSHEDPE		
55 <u>0</u> EEQYNSTYRV	56 <u>0</u> VSVLTVLHQD		58 <u>0</u> VSNKALPAPI		
	62 <u>0</u> VSLTCLVKGF				
67 <u>0</u> DKSRWQQGNV	68 <u>0</u> FSCSVMHEAL	69 <u>0</u> HNHYTQKSLS	LSPGK		

Figure 2. TBF protein amino acid sequence

The nucleatic sequence that encodes the TBF protein (with length of 2085 nucleotide pairs) was obtained via calculation (Fig. 3).


1 <u>0</u>	2 <u>0</u>	3 <u>0</u>	4 <u>0</u>	5 <u>0</u>	6 <u>0</u>
ATGCAGCTGC	TGAAACAGCT	GTTTAAAAAA	AAATTTGTGA	AAGAAGAACA	TGATAAAAAA
7 <u>0</u>	8 <u>0</u>	9 <u>0</u>	10 <u>0</u>	11 <u>0</u>	12 <u>0</u>
ACCGGCCAGG	AAGGCATGAC	CCTGCTGGAA	GTGATTATTG	TGCTGGGCAT	TATGGGCGTG
13 <u>0</u>	14 <u>0</u>	15 <u>0</u>	16 <u>0</u>	17 <u>0</u>	18 <u>0</u>
GTGAGCGCGG	GCGTGGTGAC	CCTGGCGCAG	CGCGCGATTG	ATAGCCAGAT	TATGACCAAA
19 <u>0</u>	20 <u>0</u>	21 <u>0</u>	22 <u>0</u>	23 <u>0</u>	24 <u>0</u>
GCGGCGCAGA	GCCTGAACAG	CATTCAGGTG	GCGCTGACCC	AGACCTATCG	CGGCCTGGGC
25 <u>0</u>	26 <u>0</u>	27 <u>0</u>	28 <u>0</u>	29 <u>0</u>	30 <u>0</u>
AACTATCCGG	CGACCGCGGA	TGCGACCGCG	GCGAGCAAAC	TGACCAGCGG	CCTGGTGAGC
31 <u>0</u>	32 <u>0</u>	33 <u>0</u>	34 <u>0</u>	35 <u>0</u>	36 <u>0</u>
CTGGGCAAAA	TTAGCAGCGA	TGAAGCGAAA	AACCCGTTTA	ACGGCACCAA	CATGAACATT
37 <u>0</u>	38 <u>0</u>	39 <u>0</u>	$\begin{array}{c} 40\underline{0} \\ \text{AAAGCGTTTG} \end{array}$	41 <u>0</u>	42 <u>0</u>
TTTAGCTTTC	CGCGCAACGC	GGCGGCGAAC		CGATTAGCGT	GGATGGCCTG
43 <u>0</u>	44 <u>0</u>	45 <u>0</u>	46 <u>0</u>	47 <u>0</u>	48 <u>0</u>
ACCCAGGCGC	AGTGCAAAAC	CCTGATTACC	AGCGTGGGCG	ATATGTTTCC	GTATATTGCG
49 <u>0</u>	50 <u>0</u>	51 <u>0</u>	52 <u>0</u>	53 <u>0</u>	54 <u>0</u>
ATTAAAGCGG	GCGGCGCGGT	GGCGCTGGCG	GATCTGGGCG	ATTTTGAAAA	CAGCGCGGCG
55 <u>0</u>	56 <u>0</u>	57 <u>0</u>	58 <u>0</u>	59 <u>0</u>	60 <u>0</u>
GCGGCGGAAA	CCGGCGTGGG	CGTGATTAAA	AGCATTGCGC	CGGCGAGCAA	AAACCTGGAT
61 <u>0</u>	62 <u>0</u>	63 <u>0</u>	64 <u>0</u>	65 <u>0</u>	66 <u>0</u>
CTGACCAACA	TTACCCATGT	GGAAAAACTG	TGCAAAGGCA	CCGCGCCGTT	TGGCGTGGCG
67 <u>0</u>	68 <u>0</u>	69 <u>0</u>	70 <u>0</u>	71 <u>0</u>	72 <u>0</u>
TTTGGCAACA	GCGGCGGCGG	CGGCGGCGGC	GGCGGCATGA	TTAAACTGAA	ATTTGGCGTG
73 <u>0</u>	74 <u>0</u>	75 <u>0</u>	76 <u>0</u>	77 <u>0</u>	78 <u>0</u>
TTTTTTACCG	TGCTGCTGAG	CAGCGCGTAT	GCGCATGGCA	CCCCGCAGAA	CATTACCGAT
79 <u>0</u>	80 <u>0</u>	81 <u>0</u>	82 <u>0</u>	83 <u>0</u>	84 <u>0</u>
CTGTGCGCGG	AATATCATAA	CACCCAGATT	TATACCCTGA	ACGATAAAAT	TTTTAGCTAT
85 <u>0</u>	86 <u>0</u>	87 <u>0</u>	88 <u>0</u>	89 <u>0</u>	90 <u>0</u>
ACCGAAAGCC	TGGCGGGCAA	ACGCGAAATG	GCGATTATTA	CCTTTAAAAA	CGGCGCGATT
91 <u>0</u>	92 <u>0</u>	93 <u>0</u>	94 <u>0</u>	95 <u>0</u>	96 <u>0</u>
TTTCAGGTGG	AAGTGCCGGG	CAGCCAGCAT	ATTGATAGCC	AGAAAAAAGC	GATTGAACGC
97 <u>0</u>	98 <u>0</u>	99 <u>0</u>	100 <u>0</u>	101 <u>0</u>	102 <u>0</u>
ATGAAAGATA	CCCTGCGCAT	TGCGTATCTG	ACCGAAGCGA	AAGTGGAAAA	ACTGTGCGTG
103 <u>0</u>	104 <u>0</u>	105 <u>0</u>	106 <u>0</u>	107 <u>0</u>	108 <u>0</u>
TGGAACAACA	AAACCCCGCA	TGCGATTGCG	GCGATTAGCA	TGGCGAACGG	CGGCGGCGGC
109 <u>0</u>	110 <u>0</u>	111 <u>0</u>	112 <u>0</u>	$\frac{113\underline{0}}{\mathtt{TTCCGCTGGC}}$	114 <u>0</u>
GGCGGCGGCG	GCGGCGCGAG	CACCAAAGGC	CCGAGCGTGT		GCCGAGCAGC
115 <u>0</u>	116 <u>0</u>	117 <u>0</u>	118 <u>0</u>	119 <u>0</u>	120 <u>0</u>
AAAAGCACCA	GCGGCGGCAC	CGCGGCGCTG	GGCTGCCTGG	TGAAAGATTA	TTTTCCGGAA
121 <u>0</u>	122 <u>0</u>	123 <u>0</u>	124 <u>0</u>	125 <u>0</u>	126 <u>0</u>
CCGGTGACCG	TGAGCTGGAA	CAGCGGCGCG	CTGACCAGCG	GCGTGCATAC	CTTTCCGGCG
127 <u>0</u>	128 <u>0</u>	129 <u>0</u>	130 <u>0</u>	131 <u>0</u>	132 <u>0</u>
GTGCTGCAGA	GCAGCGGCCT	GTATAGCCTG	AGCAGCGTGG	TGACCGTGCC	GAGCAGCAGC
133 <u>0</u>	134 <u>0</u>	135 <u>0</u>	136 <u>0</u>	137 <u>0</u>	138 <u>0</u>
CTGGGCACCC	AGACCTATAT	TTGCAACGTG	AACCATAAAC	CGAGCAACAC	CAAAGTGGAT

144 <u>0</u>	143 <u>0</u>	142 <u>0</u>	141 <u>0</u>	140 <u>0</u>	139 <u>0</u>
CCCGGCGCCG	GCCCGCCGTG	ACCCATACCT	CTGCGATAAA	AACCGAAAAG	AAAAAAGTGG
150 <u>0</u>	149 <u>0</u>	148 <u>0</u>	147 <u>0</u>	146 <u>0</u>	145 <u>0</u>
TACCCTGATG	AACCGAAAGA	TTTCCGCCGA	CGTGTTTCTG	GCGGCCCGAG	GAACTGCTGG
156 <u>0</u>	155 <u>0</u>	154 <u>0</u>	153 <u>0</u>	152 <u>0</u>	151 <u>0</u>
AGATCCGGAA	TGAGCCATGA	GTGGTGGATG	GACCTGCGTG	CCCCGGAAGT	ATTAGCCGCA
162 <u>0</u>	161 <u>0</u>	160 <u>0</u>	159 <u>0</u>	158 <u>0</u>	157 <u>0</u>
CAAACCGCGC	ACGCGAAAAC	GAAGTGCATA	GGATGGCGTG	ACTGGTATGT	GTGAAATTTA
168 <u>0</u>	167 <u>0</u>	166 <u>0</u>	165 <u>0</u>	164 <u>0</u>	163 <u>0</u>
GCATCAGGAT	TGACCGTGCT	GTGAGCGTGC	CTATCGCGTG	ATAACAGCAC	GAAGAACAGT
174 <u>0</u>	173 <u>0</u>	172 <u>0</u>	171 <u>0</u>	170 <u>0</u>	169 <u>0</u>
GGCGCCGATT	AAGCGCTGCC	GTGAGCAACA	TAAATGCAAA	GCAAAGAATA	TGGCTGAACG
180 <u>0</u> TACCCTGCCG					
186 <u>0</u> GAAAGGCTTT					
192 <u>0</u>	191 <u>0</u>	190 <u>0</u>	189 <u>0</u>	188 <u>0</u>	187 <u>0</u>
CAACTATAAA	AGCCGGAAAA	AGCAACGGCC	GGAATGGGAA	ATATTGCGGT	TATCCGAGCG
198 <u>0</u>	197 <u>0</u>	196 <u>0</u>	195 <u>0</u>	194 <u>0</u>	193 <u>0</u>
ACTGACCGTG	TGTATAGCAA	AGCTTTTTC	TAGCGATGGC	CGGTGCTGGA	ACCACCCCGC
204 <u>0</u>	203 <u>0</u>	202 <u>0</u>	201 <u>0</u>	200 <u>0</u>	199 <u>0</u>
TGAAGCGCTG	GCGTGATGCA	TTTAGCTGCA	GGGCAACGTG	GCTGGCAGCA	GATAAAAGCC
				206 <u>0</u> ATACCCAGAA	

Figure 3. tbf gene nucleatic sequence

DISCUSSION

In the study, we carried out the synthesis of a calculation model of *tbf* gene sequences with length of 2085 nucleotide pairs by means of the PCR technique and overlapping oligonucleotides that were synthesized via the DNA synthesizer ASM-800 (BIOSSET, Russia). The absence of mutations in the sequence of hybrid gene was indicated through applying the sequencing technique (Fig. 4).

Figure 4. A *tbf* gene chromatogram fragment. Interpretation according to the direct-primer Sanger technique (TAATACGACTCACTATAGGG)

Sequencing of amplified DNA segments was performed according to the Sanger technique.

CONCLUSIONS

Our study was the first to calculate the sequence of nucleotide pairs forming part of *tbf* gene that encodes immunodominant epitopes of pathogenic cholera strains and to synthesized it.

We cloned the *tbf* gene in plasmid pGEM-T Easy and examined the hybrid gene sequence for the absence of mutations, using the Sanger sequencing technique.

The obtained results are of interest for further development of stable and safe recombinant vaccines that contains subunits of cholera toxin B (rBS), protein of cholera A piles (TcpA), as well as the domain that is a ligand to Fc-receptors at the stomach wall (FcL).

ORCID iDs

Julia Bazarnova https://orcid.org/0000-0001-9275-7913

REFERENCES

- Kiaie S, Abtahi H, Mosayebi G, Alikhani M, Pakzad I. Recombinant toxin-coregulated pilus A (TcpA) as a candidate subunit cholera vaccine. *Iran J Microbiol*. 2014;6:68-73.
- Megli CJ, Yuen AS, Kolappan S, Richardson MR, Dharmasena MN. Crystal structure of the *Vibrio cholerae* colonization factor TcpF and identification of a functional immunogenic site. *Mol Biol*. 2011;409:146-58.

- Liljeqvist S. Surface display of the cholera toxin B subunit on Staphylococcus xylosus and Staphylococcus carnosus. Appl Environ Microbiol. 1997;63:2481-8.
- Sanchez J, Johansson S, Löwenadler B, Svennerholm A, Holmgren J. Recombinant cholera toxin B subunit and gene fusion proteins for oral vaccination. *Research in Microbiology*. 1990;141:971-9.
- Praetor A, Jones RM, Wong WL, Hunziker W. Membrane-anchored human FcRn can oligomerize in the absence of IgG. *J. Mol. Biol.* 2002;321:277-84.
- Schroeder HW, Cavacini L. Structure and function of immunoglobulins. *J Allergy Clin Immunol*. 2010:125(2,Suppl 2):S41-52. https://doi.org:10.1016/j.jaci.2009.09.046
- 7. Raghavan M, Bjorkman PJ. Fc receptors and their interactions with immunoglobulins. *Annu Rev Cell Dev Biol.* 1996;12:181-220.
- Reed SM, Bayly WM, Sellon DC. Equine internal medicine (4 edition).
 St. Louis, Missouri: Elsevier; 2018:1566.
- O. Addgene: pET28a(+) www.addgene.org/20378/.

Vol. 32, No. 3, Pages 130-133